Completely regular graphs with $\mu\le k-2b_1+3$
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 28-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a connected edge regular graph with parameters $(v,k,\lambda)$ and $b_1=k-\lambda-1$. Then for every vertices $u,w$ with $d(u,w)=2$ the parameter $\mu(u,w)=k-2b_1+1$, where $1\le x\le2b_1$. In the paper completely regular graphs with $x\le 3$ are classified.
@article{TIMB_2008_16_1_a5,
     author = {K. S. Efimov and A. A. Makhnev},
     title = {Completely regular graphs with $\mu\le k-2b_1+3$},
     journal = {Trudy Instituta matematiki},
     pages = {28--39},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
TI  - Completely regular graphs with $\mu\le k-2b_1+3$
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 28
EP  - 39
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/
LA  - ru
ID  - TIMB_2008_16_1_a5
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%T Completely regular graphs with $\mu\le k-2b_1+3$
%J Trudy Instituta matematiki
%D 2008
%P 28-39
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/
%G ru
%F TIMB_2008_16_1_a5
K. S. Efimov; A. A. Makhnev. Completely regular graphs with $\mu\le k-2b_1+3$. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 28-39. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR

[2] Makhnev A.A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl

[3] Makhnev A.A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izv. RAN. Ser. matem., 68 (2004), 159–182 | MR | Zbl

[4] Neumaier A., “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33 (1979), 392–400 | DOI | MR

[5] Wilbrink H.A., Brouwer A.E., “$(57,14,1)$-strongly regular graph does not exist”, Proc. Kon. Nederl. Akad. Ser. A, 45 (1983), 117–121 | MR | Zbl

[6] Makhnev A.A., “O psevdogeometricheskikh grafakh nekotorykh chastichnykh geometrii”, Voprosy algebry, 11, Gomelskii un-t, Gomel, 1997, 60–67 | MR

[7] Belousov I.N., Makhnev A.A., “O pochti khoroshikh parakh vershin v reberno regulyarnykh grafakh”, Izv. Uralskogo gos. un-ta, 36 (2005), 35–48 | MR | Zbl