Completely regular graphs with $\mu\le k-2b_1+3$
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 28-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a connected edge regular graph with parameters $(v,k,\lambda)$ and $b_1=k-\lambda-1$. Then for every vertices $u,w$ with $d(u,w)=2$ the parameter $\mu(u,w)=k-2b_1+1$, where $1\le x\le2b_1$. In the paper completely regular graphs with $x\le 3$ are classified.
@article{TIMB_2008_16_1_a5,
author = {K. S. Efimov and A. A. Makhnev},
title = {Completely regular graphs with $\mu\le k-2b_1+3$},
journal = {Trudy Instituta matematiki},
pages = {28--39},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/}
}
K. S. Efimov; A. A. Makhnev. Completely regular graphs with $\mu\le k-2b_1+3$. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 28-39. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a5/