On hyperradical formations of finite groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 9-12
Voir la notice de l'article provenant de la source Math-Net.Ru
A formation $\mathfrak F$ of finite groups is called a hyperradical formation if $\mathfrak F$ is a normally subgroup-closed formation and $\mathfrak F$ contains every group $G=\langle H,K\rangle$, where $H$ and $K$ are $\mathfrak F$-subnormal $\mathfrak F$-subgroups of $G$. It is proved that every subgroup-closed hyperradical formation of finite groups is a lattice solubly saturated Fitting formation.
@article{TIMB_2008_16_1_a2,
author = {A. F. Vasil'ev and I. N. Khalimonchik},
title = {On hyperradical formations of finite groups},
journal = {Trudy Instituta matematiki},
pages = {9--12},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a2/}
}
A. F. Vasil'ev; I. N. Khalimonchik. On hyperradical formations of finite groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 9-12. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a2/