On the $p$-length of finite $p$-soluble groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Finite $p$-soluble groups with maximal subgroups of $p$-length 1 are investigated. It is proved that a finite $p$-soluble group is of $p$-length 1 if its Sylow $p$-subgroup is extraspecial and is isomorphic to a normal Sylow $p$-subgroup of a minimal non-supersoluble group of odd order.
@article{TIMB_2008_16_1_a15,
author = {L. A. Shemetkov and Yi Xiaolan},
title = {On the $p$-length of finite $p$-soluble groups},
journal = {Trudy Instituta matematiki},
pages = {93--96},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/}
}
L. A. Shemetkov; Yi Xiaolan. On the $p$-length of finite $p$-soluble groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/