On the $p$-length of finite $p$-soluble groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite $p$-soluble groups with maximal subgroups of $p$-length 1 are investigated. It is proved that a finite $p$-soluble group is of $p$-length 1 if its Sylow $p$-subgroup is extraspecial and is isomorphic to a normal Sylow $p$-subgroup of a minimal non-supersoluble group of odd order.
@article{TIMB_2008_16_1_a15,
     author = {L. A. Shemetkov and Yi Xiaolan},
     title = {On the $p$-length of finite $p$-soluble groups},
     journal = {Trudy Instituta matematiki},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/}
}
TY  - JOUR
AU  - L. A. Shemetkov
AU  - Yi Xiaolan
TI  - On the $p$-length of finite $p$-soluble groups
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 93
EP  - 96
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/
LA  - en
ID  - TIMB_2008_16_1_a15
ER  - 
%0 Journal Article
%A L. A. Shemetkov
%A Yi Xiaolan
%T On the $p$-length of finite $p$-soluble groups
%J Trudy Instituta matematiki
%D 2008
%P 93-96
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/
%G en
%F TIMB_2008_16_1_a15
L. A. Shemetkov; Yi Xiaolan. On the $p$-length of finite $p$-soluble groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/

[1] Monakhov V.S., “A product of finite groups close to nilpotent”, Finite groups, Minsk, 1975, 70–100 | Zbl

[2] Zhurtov A.Kh., Syskin S.A., “On Schmidt groups”, Sib. Mat. Zh., 28:2 (1987), 74–78 | DOI | MR | Zbl

[3] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; New York, 1992 | MR

[4] Shemetkov L.A., Formations of finite groups, Nauka, Moscow, 1978 | MR | Zbl

[5] Kurzweil H., Stellmacher B., The theory of finite groups: an introduction, Springer-Verdag, New York; Berlin; Heidelberg, 2004 | MR | Zbl

[6] Hall M., The theory of groups, The Macmillan Company, New York, 1959 | MR

[7] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin; Heidelberg; New York, 1967 | MR | Zbl

[8] Gorenstein D., Finite groups, Harper and Row, New York; Evanston; London, 1968 | MR | Zbl

[9] Baer R., “Supersoluble immersion”, Canad. J. Math., 1959, no. 11, 353–369 | DOI | MR | Zbl

[10] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl