On the $p$-length of finite $p$-soluble groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite $p$-soluble groups with maximal subgroups of $p$-length 1 are investigated. It is proved that a finite $p$-soluble group is of $p$-length 1 if its Sylow $p$-subgroup is extraspecial and is isomorphic to a normal Sylow $p$-subgroup of a minimal non-supersoluble group of odd order.
@article{TIMB_2008_16_1_a15,
     author = {L. A. Shemetkov and Yi Xiaolan},
     title = {On the $p$-length of finite $p$-soluble groups},
     journal = {Trudy Instituta matematiki},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/}
}
TY  - JOUR
AU  - L. A. Shemetkov
AU  - Yi Xiaolan
TI  - On the $p$-length of finite $p$-soluble groups
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 93
EP  - 96
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/
LA  - en
ID  - TIMB_2008_16_1_a15
ER  - 
%0 Journal Article
%A L. A. Shemetkov
%A Yi Xiaolan
%T On the $p$-length of finite $p$-soluble groups
%J Trudy Instituta matematiki
%D 2008
%P 93-96
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/
%G en
%F TIMB_2008_16_1_a15
L. A. Shemetkov; Yi Xiaolan. On the $p$-length of finite $p$-soluble groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a15/