Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2008_16_1_a14, author = {N. S. Chernikov}, title = {Groups with an abelian maximal subgroup}, journal = {Trudy Instituta matematiki}, pages = {86--92}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/} }
N. S. Chernikov. Groups with an abelian maximal subgroup. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 86-92. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/
[1] Herstein I.N., “A remark on finite groups”, Proc. Amer. Math. Soc., 9 (1958), 255–257 | DOI | MR | Zbl
[2] Ol'shanskii A.Yu., Geometry of defining relations in groups, Nauka, Moscow, 1989 | MR
[3] Busarkin V.M., Starostin A.I., “On locally finite groups with a partition”, Uspehi Mat. Nauk, 17:6 (1962), 227
[4] Busarkin V.M., Starostin A.I., “Locally finite groups with a partition”, Mat. Sb., 62:3 (1963), 275–294 | MR | Zbl
[5] Kegel O.H., “Lokal endliche Gruppen mit nicht-trivialer Partition”, Arch. Math., 13:1 (1962), 10–28 | DOI | MR | Zbl
[6] Frobenius G., Über auflösbare Gruppen, IV, Sitzungsberichte Preuss. Akad. Wiss. zu Berlin, 1901
[7] Higman G., “Groups and rings having automorphisms without non-trivial fixed elements”, J. London Math. Soc., 30 (1957), 321–334 | DOI | MR
[8] Thompson J.G., “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci. USA, 45 (1959), 578–581 | DOI | MR | Zbl
[9] Burnside N., The theory of groups of finite order, 2-nd ed., Cambridge University Press, Cambridge, 1911 | Zbl
[10] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Springer, Berlin etc., 1972
[11] Popov A.M., Sozutov A.I., Shunkov V.P., Groups with systems of Frobenius subgroups, State Technical University, Krasnoyarsk, 2004 | Zbl
[12] Chernikov S.N., Groups with prescribed properties of the system of subgroups, Nauka, M., 1980 | MR
[13] Nazarova L.A., Roiter A.V., Sergeichuk V.V., Bondarenko V.M., “Application of modules over a dyad to the classification of finite $p$-groups that have an abelian subgroup of index $p$ and to the classification of pairs of mutually annihilating operators”, Trans. Sci. Semin. Leningrad Dept. Steklov In-te Math., 28, 1972, 69–92 | MR | Zbl
[14] Szekeres G., “Determination of a certain family of finite metabelian groups”, Trans. Amer. Math. Soc., 66:1 (1949), 1–43 | DOI | MR | Zbl
[15] Grün O., “Beitrage zur Gruppentheorie. II. Über ein Satz von Frobenius”, J. Reine Angew. Math., 186 (1948), 165–169 | MR