Groups with an abelian maximal subgroup
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

A known theorem of Herstein asserts that a finite group containing an abelian maximal subgroup is solvable. A theorem that describes, to a certain extent, the structure of a locally finite group $G$ with an abelian maximal subgroup is proved. In particular, for such group $G/Z(G)$ is metabelian.
@article{TIMB_2008_16_1_a14,
     author = {N. S. Chernikov},
     title = {Groups with an abelian maximal subgroup},
     journal = {Trudy Instituta matematiki},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/}
}
TY  - JOUR
AU  - N. S. Chernikov
TI  - Groups with an abelian maximal subgroup
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 86
EP  - 92
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/
LA  - en
ID  - TIMB_2008_16_1_a14
ER  - 
%0 Journal Article
%A N. S. Chernikov
%T Groups with an abelian maximal subgroup
%J Trudy Instituta matematiki
%D 2008
%P 86-92
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/
%G en
%F TIMB_2008_16_1_a14
N. S. Chernikov. Groups with an abelian maximal subgroup. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 86-92. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/

[1] Herstein I.N., “A remark on finite groups”, Proc. Amer. Math. Soc., 9 (1958), 255–257 | DOI | MR | Zbl

[2] Ol'shanskii A.Yu., Geometry of defining relations in groups, Nauka, Moscow, 1989 | MR

[3] Busarkin V.M., Starostin A.I., “On locally finite groups with a partition”, Uspehi Mat. Nauk, 17:6 (1962), 227

[4] Busarkin V.M., Starostin A.I., “Locally finite groups with a partition”, Mat. Sb., 62:3 (1963), 275–294 | MR | Zbl

[5] Kegel O.H., “Lokal endliche Gruppen mit nicht-trivialer Partition”, Arch. Math., 13:1 (1962), 10–28 | DOI | MR | Zbl

[6] Frobenius G., Über auflösbare Gruppen, IV, Sitzungsberichte Preuss. Akad. Wiss. zu Berlin, 1901

[7] Higman G., “Groups and rings having automorphisms without non-trivial fixed elements”, J. London Math. Soc., 30 (1957), 321–334 | DOI | MR

[8] Thompson J.G., “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci. USA, 45 (1959), 578–581 | DOI | MR | Zbl

[9] Burnside N., The theory of groups of finite order, 2-nd ed., Cambridge University Press, Cambridge, 1911 | Zbl

[10] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Springer, Berlin etc., 1972

[11] Popov A.M., Sozutov A.I., Shunkov V.P., Groups with systems of Frobenius subgroups, State Technical University, Krasnoyarsk, 2004 | Zbl

[12] Chernikov S.N., Groups with prescribed properties of the system of subgroups, Nauka, M., 1980 | MR

[13] Nazarova L.A., Roiter A.V., Sergeichuk V.V., Bondarenko V.M., “Application of modules over a dyad to the classification of finite $p$-groups that have an abelian subgroup of index $p$ and to the classification of pairs of mutually annihilating operators”, Trans. Sci. Semin. Leningrad Dept. Steklov In-te Math., 28, 1972, 69–92 | MR | Zbl

[14] Szekeres G., “Determination of a certain family of finite metabelian groups”, Trans. Amer. Math. Soc., 66:1 (1949), 1–43 | DOI | MR | Zbl

[15] Grün O., “Beitrage zur Gruppentheorie. II. Über ein Satz von Frobenius”, J. Reine Angew. Math., 186 (1948), 165–169 | MR