Groups with an abelian maximal subgroup
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 86-92

Voir la notice de l'article provenant de la source Math-Net.Ru

A known theorem of Herstein asserts that a finite group containing an abelian maximal subgroup is solvable. A theorem that describes, to a certain extent, the structure of a locally finite group $G$ with an abelian maximal subgroup is proved. In particular, for such group $G/Z(G)$ is metabelian.
@article{TIMB_2008_16_1_a14,
     author = {N. S. Chernikov},
     title = {Groups with an abelian maximal subgroup},
     journal = {Trudy Instituta matematiki},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/}
}
TY  - JOUR
AU  - N. S. Chernikov
TI  - Groups with an abelian maximal subgroup
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 86
EP  - 92
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/
LA  - en
ID  - TIMB_2008_16_1_a14
ER  - 
%0 Journal Article
%A N. S. Chernikov
%T Groups with an abelian maximal subgroup
%J Trudy Instituta matematiki
%D 2008
%P 86-92
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/
%G en
%F TIMB_2008_16_1_a14
N. S. Chernikov. Groups with an abelian maximal subgroup. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 86-92. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a14/