On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with finite groups. A $\tau$-closed totally saturated formation $\mathfrak F$ is called a minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation (or an $\mathfrak H_\infty^\tau$-critical formation) if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\tau$-closed totally saturated subformations of $\mathfrak F$ are contained in $\mathfrak H$. Theorem. Let $\mathfrak F$ and $\mathfrak H$ be $\tau$-closed totally saturated formations, $\mathfrak F\not\subseteq\mathfrak H.$ Then $\mathfrak F$ has at least one minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation.
@article{TIMB_2008_16_1_a11,
     author = {V. G. Safonov},
     title = {On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations},
     journal = {Trudy Instituta matematiki},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/}
}
TY  - JOUR
AU  - V. G. Safonov
TI  - On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 67
EP  - 72
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/
LA  - ru
ID  - TIMB_2008_16_1_a11
ER  - 
%0 Journal Article
%A V. G. Safonov
%T On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations
%J Trudy Instituta matematiki
%D 2008
%P 67-72
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/
%G ru
%F TIMB_2008_16_1_a11
V. G. Safonov. On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/

[1] Shemetkov L.A., Formatsii konechnykh grupp, M., 1978 | MR

[2] Shemetkov L.A., Skiba A.N., Formatsii algebraicheskikh sistem, M., 1989

[3] Skiba A.N., Algebra formatsii, Minsk, 1997 | MR

[4] Skiba A.N., “Kharakterizatsiya konechnykh razreshimykh grupp zadannoi nilpotentnoi dliny”, Voprosy algebry, 3, Universitetskoe, Minsk, 1987, 21–31 | MR

[5] Safonov V.G., “Kharakterizatsiya razreshimykh odnoporozhdennykh totalno nasyschennykh formatsii konechnykh grupp”, Sib. mat. zhurn., 48:1 (2007), 185–191 | MR | Zbl

[6] Safonov V.G., O svoistvakh reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii, Preprint 3, Gomelskii gosuniversitet, Gomel, 2004

[7] Safonov V.G., “O dvukh zadachakh teorii totalno nasyschennykh formatsii”, Dokl. NAN Belarusi, 49:5 (2005), 16–20 | MR | Zbl

[8] Safonov V.G., “Totalno nasyschennye formatsii s metanilpotentnym $l_\infty$-defektom 3”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 4, 40–46 | MR