On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The article deals with finite groups. A $\tau$-closed totally saturated formation $\mathfrak F$ is called a minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation (or an $\mathfrak H_\infty^\tau$-critical formation) if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\tau$-closed totally saturated subformations of $\mathfrak F$ are contained in $\mathfrak H$. Theorem. Let $\mathfrak F$ and $\mathfrak H$ be $\tau$-closed totally saturated formations, $\mathfrak F\not\subseteq\mathfrak H.$ Then $\mathfrak F$ has at least one minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation.
@article{TIMB_2008_16_1_a11,
author = {V. G. Safonov},
title = {On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations},
journal = {Trudy Instituta matematiki},
pages = {67--72},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/}
}
TY - JOUR AU - V. G. Safonov TI - On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations JO - Trudy Instituta matematiki PY - 2008 SP - 67 EP - 72 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/ LA - ru ID - TIMB_2008_16_1_a11 ER -
V. G. Safonov. On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a11/