Towards Huppert--Shemetkov's theorem
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in every finite non-identity soluble group $G$ there exists a maximal subgroup $H$ such that $H$ does not contain the Fitting subgroup and $|G:H|=p^{r(G/\Phi(G))}$ for some prime number $p$. Here $r(G/\Phi(G))$ is the chief rank of the quotient $G/\Phi(G)$.
@article{TIMB_2008_16_1_a10,
author = {V. S. Monakhov},
title = {Towards {Huppert--Shemetkov's} theorem},
journal = {Trudy Instituta matematiki},
pages = {64--66},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/}
}
V. S. Monakhov. Towards Huppert--Shemetkov's theorem. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/