Towards Huppert--Shemetkov's theorem
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in every finite non-identity soluble group $G$ there exists a maximal subgroup $H$ such that $H$ does not contain the Fitting subgroup and $|G:H|=p^{r(G/\Phi(G))}$ for some prime number $p$. Here $r(G/\Phi(G))$ is the chief rank of the quotient $G/\Phi(G)$.
@article{TIMB_2008_16_1_a10,
     author = {V. S. Monakhov},
     title = {Towards {Huppert--Shemetkov's} theorem},
     journal = {Trudy Instituta matematiki},
     pages = {64--66},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - Towards Huppert--Shemetkov's theorem
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 64
EP  - 66
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/
LA  - ru
ID  - TIMB_2008_16_1_a10
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T Towards Huppert--Shemetkov's theorem
%J Trudy Instituta matematiki
%D 2008
%P 64-66
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/
%G ru
%F TIMB_2008_16_1_a10
V. S. Monakhov. Towards Huppert--Shemetkov's theorem. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/

[1] Shemetkov L.A., “O konechnykh razreshimykh gruppakh”, Izv. AN SSSR. Ser. matematika, 32:3 (1968), 533–559 | MR | Zbl

[2] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[3] Huppert B., Endliche Gruppen I, Berlin, Heidelberg, New York, 1967, 793 pp. | MR | Zbl

[4] Pazderski G., “Über lineare auflosbare Gruppen”, Math. Nachr., 45 (1970), 1–68 | DOI | MR | Zbl

[5] Gashutz W., “Existenz und Konjugiertsein von Untergruppen, die in endlichen auflosbaren Gruppen durch gewisse Indexschranken definiert sind”, J. Algebra, 53:2 (1978), 389–394 | DOI | MR