Towards Huppert–Shemetkov's theorem
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that in every finite non-identity soluble group $G$ there exists a maximal subgroup $H$ such that $H$ does not contain the Fitting subgroup and $|G:H|=p^{r(G/\Phi(G))}$ for some prime number $p$. Here $r(G/\Phi(G))$ is the chief rank of the quotient $G/\Phi(G)$.
@article{TIMB_2008_16_1_a10,
author = {V. S. Monakhov},
title = {Towards {Huppert{\textendash}Shemetkov's} theorem},
journal = {Trudy Instituta matematiki},
pages = {64--66},
year = {2008},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/}
}
V. S. Monakhov. Towards Huppert–Shemetkov's theorem. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 64-66. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a10/
[1] Shemetkov L.A., “O konechnykh razreshimykh gruppakh”, Izv. AN SSSR. Ser. matematika, 32:3 (1968), 533–559 | MR | Zbl
[2] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl
[3] Huppert B., Endliche Gruppen I, Berlin, Heidelberg, New York, 1967, 793 pp. | MR | Zbl
[4] Pazderski G., “Über lineare auflosbare Gruppen”, Math. Nachr., 45 (1970), 1–68 | DOI | MR | Zbl
[5] Gashutz W., “Existenz und Konjugiertsein von Untergruppen, die in endlichen auflosbaren Gruppen durch gewisse Indexschranken definiert sind”, J. Algebra, 53:2 (1978), 389–394 | DOI | MR