Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 4-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of mutually permutable products of finite groups. A factorised group $G=AB$ is said to be a mutually permutable product of its factors $A$ and $B$ when each factor permutes with every subgroup of the other factor. We prove that mutually permutable products of $\mathcal Y$-groups (groups satisfying the converse of Lagrange's theorem) and $\mathrm {SC}$-groups (groups whose chief factors are simple) are $\mathrm{SC}$-groups. Next, we show that a product of pairwise mutually permutable $\mathcal Y$-groups is supersoluble. Finally, we give a local version of the result stating that if a mutually permutable product of two groups is a $\mathrm{PST}$-group (that is, a group in which every subnormal subgroup permutes with all Sylow subgroups), then both factors are $\mathrm{PST}$-groups.
@article{TIMB_2008_16_1_a1,
     author = {M. Asaad and A. Ballester-Bolinches and J. C. Beidleman and R. Esteban-Romero},
     title = {Transitivity of {Sylow} permutability, the converse of {Lagrange's} theorem, and mutually permutable products},
     journal = {Trudy Instituta matematiki},
     pages = {4--8},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a1/}
}
TY  - JOUR
AU  - M. Asaad
AU  - A. Ballester-Bolinches
AU  - J. C. Beidleman
AU  - R. Esteban-Romero
TI  - Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 4
EP  - 8
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a1/
LA  - en
ID  - TIMB_2008_16_1_a1
ER  - 
%0 Journal Article
%A M. Asaad
%A A. Ballester-Bolinches
%A J. C. Beidleman
%A R. Esteban-Romero
%T Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products
%J Trudy Instituta matematiki
%D 2008
%P 4-8
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a1/
%G en
%F TIMB_2008_16_1_a1
M. Asaad; A. Ballester-Bolinches; J. C. Beidleman; R. Esteban-Romero. Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 4-8. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a1/

[1] Kegel O.H., “Produkte nilpotenter Gruppen”, Arch. Math. Basel, 12 (1961), 90–93 | MR | Zbl

[2] Wielandt H., “Über das Produkt von paarweise vertauschbaren nilpotenten Gruppen”, Math. Z., 55 (1951), 1–7 | DOI | MR | Zbl

[3] Asaad M., Shaalan A., “On the supersolvability of finite groups”, Arch. Math. Basel, 53:4 (1989), 318–326 | MR | Zbl

[4] Alejandre M.J., Ballester-Bolinches A., Cossey J., “Permutable products of supersoluble groups”, J. Algebra, 276 (2004), 453–461 | DOI | MR | Zbl

[5] Ballester-Bolinches A., Cossey J., Pedraza-Aguilera M.C., “On mutually permutable products of finite groups”, J. Algebra, 294 (2005), 127–135 | DOI | MR | Zbl

[6] Beidleman J., Hauck P., Heineken H., “Totally permutable products of certain classes of finite groups”, J. Algebra, 276:2 (2004), 826–835 | DOI | MR | Zbl

[7] Beidleman J., Heineken H., “Totally permutable torsion subgroups”, J. Group Theory, 2 (1999), 377–392 | DOI | MR | Zbl

[8] Beidleman J.C., Heineken H., “Mutually permutable subgroups and group classes”, Arch. Math. Basel, 85 (2005), 18–30 | MR | Zbl

[9] Beidleman J.C., Heineken H., “Group classes and mutually permutable products”, J. Algebra, 297 (2006), 409–416 | DOI | MR | Zbl

[10] Kegel O.H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[11] Agrawal R.K., “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47:1 (1975), 77–83 | DOI | MR | Zbl

[12] Alejandre M.J., Ballester-Bolinches A., Pedraza-Aguilera M.C., “Finite soluble groups with permutable subnormal subgroups”, J. Algebra, 240:2 (2001), 705–722 | DOI | MR | Zbl

[13] Asaad M., Csörgő P., “Characterization of finite groups with some $S$-quasinormal subgroups”, Monatsh. Math., 146 (2005), 263–266 | DOI | MR | Zbl

[14] Ballester-Bolinches A., Beidleman J.C., Heineken H., “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois J. Math., 47:1-2 (2003), 63–69 | MR | Zbl

[15] Ballester-Bolinches A., Beidleman J.C., Heineken H., “A local approach to certain classes of finite groups”, Comm. Algebra, 31:12 (2003), 5931–5942 | DOI | MR | Zbl

[16] Ballester-Bolinches A., Cossey J., Esteban-Romero R., “On totally permutable products of finite groups”, J. Algebra, 293:1 (2005), 269–278 | DOI | MR | Zbl

[17] Ballester-Bolinches A., Esteban-Romero R., “Sylow permutable subnormal subgroups of finite groups. II”, Bull. Austral. Math. Soc., 64:3 (2001), 479–486 | DOI | MR | Zbl

[18] Ballester-Bolinches A., Esteban-Romero R., “Sylow permutable subnormal subgroups of finite groups”, J. Algebra, 251:2 (2002), 727–738 | DOI | MR | Zbl

[19] Ballester-Bolinches A., Esteban-Romero R., “On finite $\mathcal{T}$-groups”, J. Austral. Math. Soc. Ser. A, 75 (2003), 1–11 | DOI | MR

[20] Beidleman J.C., Brewster B., Robinson D.J.S., “Criteria for permutability to be transitive in finite groups”, J. Algebra, 222:2 (1999), 400–412 | DOI | MR | Zbl

[21] Beidleman J.C., Heineken H., “On the {F}itting core of a formation”, Bull. Austral. Math. Soc., 68:1 (2003), 107–112 | DOI | MR | Zbl

[22] Bryce R.A., Cossey J., “The Wielandt subgroup of a finite soluble group”, J. London Math. Soc., 40:2 (1989), 244–256 | DOI | MR | Zbl

[23] Gaschütz W., “Gruppen, in denen das Normalteilersein transitiv ist”, J. reine angew. Math., 198 (1957), 87–92 | DOI | MR

[24] Robinson D.J.S., “The structure of finite groups in which permutability is a transitive relation”, J. Aust. Math. Soc., 70:2 (2001), 143–159 | DOI | MR | Zbl

[25] Zacher G., “I gruppi risolubli finiti in cui i sottogruppi di composizione coincidono con i sottogrupi quasi-normali”, Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur., 37:8 (1964), 150–154 | MR | Zbl

[26] Ballester-Bolinches A., Cossey J., “Totally permutable products of finite groups satisfying SC or PST”, Monatsh. Math., 145:2 (2005), 89–94 | DOI | MR | Zbl

[27] Weinstein M., editor., Between Nilpotent and Solvable, Polygonal Publishing House, Passaic, NJ, 1982 | MR | Zbl

[28] Ballester-Bolinches A., Beidleman J.C., Esteban-Romero R., “On some classes of supersoluble groups”, J. Algebra, 312:1 (2007), 445–454 | DOI | MR | Zbl

[29] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite Groups, Springer, New York, 2006 | MR

[30] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin; New York, 1992 | MR

[31] Shemetkov L.A., “Two directions in the development of the theory of non-simple finite groups”, Russ. Math. Surv., 30:2 (1975), 185–206 | DOI | MR | Zbl

[32] Robinson D.J.S., “A note on finite groups in which normality is transitive”, Proc. Amer. Math. Soc., 19 (1968), 933–937 | DOI | MR | Zbl

[33] Asaad M., Ballester-Bolinches A., Beidleman J.C., Esteban-Romero R., “Some classes of finite groups and mutually permutable products”, J. Algebra, 319:8 (2008), 3343–3351 | DOI | MR | Zbl