On sufficient conditions to generate the alternating group by $SA$-permutations
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 58-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

$SA$-permutations, the common building components of block ciphers, are constructed as a composition of confusion ($S$-boxes) and diffusion (linear or affine $A$-boxes) transformations. We obtain conditions on $S$- and $A$-boxes, which guarantee that these permutations generate the alternating group.
@article{TIMB_2007_15_2_a6,
     author = {A. S. Maslov},
     title = {On sufficient conditions to generate the alternating group by $SA$-permutations},
     journal = {Trudy Instituta matematiki},
     pages = {58--68},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/}
}
TY  - JOUR
AU  - A. S. Maslov
TI  - On sufficient conditions to generate the alternating group by $SA$-permutations
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 58
EP  - 68
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/
LA  - ru
ID  - TIMB_2007_15_2_a6
ER  - 
%0 Journal Article
%A A. S. Maslov
%T On sufficient conditions to generate the alternating group by $SA$-permutations
%J Trudy Instituta matematiki
%D 2007
%P 58-68
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/
%G ru
%F TIMB_2007_15_2_a6
A. S. Maslov. On sufficient conditions to generate the alternating group by $SA$-permutations. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 58-68. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/

[1] Kaliski B.Jr., Rivest R., Sherman A., “Is the Data Encryption Standard a Group? (Results of cycling experiments on DES)”, J. of Cryptology, 1 (1988), 3–36 | DOI | MR | Zbl

[2] Paterson K., “Imprimitive Permutation Groups and Trapdoors in Iterated Block Ciphers”, Lecture Notes in Computer Science, 1636, 1999, 201–214 | Zbl

[3] Wernsdorf R., “The one-round functions of DES generate the alternating group”, Lecture Notes in Computer Science, 658, 1993, 99–112 | MR | Zbl

[4] Wernsdorf R., The Round Functions of SERPENT Generate the Alternating Group, Submitted to NIST as an AES comment, May 2000 http://csrc.nist.gov/encryption/aes/round2/comments/20000512-rwernsdorf.pdf

[5] Wernsdorf R., “The round functions of RIJNDAEL generate the alternating group”, Lecture Notes in Computer Science, 2365, 2002, 143–148 | Zbl

[6] Velichko M.V., Osinovskaya A.A., Suprunenko I.D., “Gruppa, porozhdennaya taktovymi podstanovkami kriptosistemy BelT”, Trudy Instituta matematiki, 15:1 (2007), 15–21 | MR

[7] Biryukov A., Shamir A., “Structural cryptanalysis of SASAS”, Lecture Notes in Computer Science, 2045, 2001, 394–405 | MR | Zbl

[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1964 | Zbl

[9] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. of Cryptology, 4 (1991), 3–72 | DOI | MR | Zbl

[10] Suprunenko D.A., Gruppy podstanovok, Minsk, Navuka i tekhnika, 1996

[11] Kameron P.Dzh., “Konechnye gruppy podstanovok i konechnye prostye gruppy”, UMN, 38:2(231) (1983), 135–157

[12] Dixon J., Mortimer B., Permutation groups, Springer-Verlag, New York, 1996 | MR

[13] Sachkov V.N., Tarakanov V.E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR | Zbl

[14] Maslov A.S., “Otsenka veroyatnosti ergodichnosti tablitsy raznostei sluchainoi podstanovki”, Trudy Instituta matematiki, 14:2 (2006), 86–94