On sufficient conditions to generate the alternating group by $SA$-permutations
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 58-68
Voir la notice de l'article provenant de la source Math-Net.Ru
$SA$-permutations, the common building components of block ciphers, are constructed as a composition of confusion ($S$-boxes) and diffusion (linear or affine $A$-boxes) transformations. We obtain conditions on $S$- and $A$-boxes, which guarantee that these permutations generate the alternating group.
@article{TIMB_2007_15_2_a6,
author = {A. S. Maslov},
title = {On sufficient conditions to generate the alternating group by $SA$-permutations},
journal = {Trudy Instituta matematiki},
pages = {58--68},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/}
}
A. S. Maslov. On sufficient conditions to generate the alternating group by $SA$-permutations. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 58-68. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a6/