Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2007_15_2_a5, author = {V. V. Lepin}, title = {Algorithms for solution $k${-Star} {Hub} {Problem} for trees and series-parallel graphs}, journal = {Trudy Instituta matematiki}, pages = {48--57}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a5/} }
V. V. Lepin. Algorithms for solution $k$-Star Hub Problem for trees and series-parallel graphs. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 48-57. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a5/
[1] Blasum U., Hochstattler W., Oertel P., Steiner diagrams and $k$-star hubs, Report No. 00.384, Angewandte mathematik und informatik Universität zu Köln, 1999 | MR
[2] Hochstattler W., Oertel P., The 5-Star-Hub-Problem is NP-complete, Report No. 00.385, Angewandte mathematik und informatik Universität zu Köln, 2000
[3] Bern M.W., Lawler E.L., Wong A.L., “Linear time computation of optimal subgraphs of decomposable graphs”, J. Algorithms, 8 (1987), 216–235 | DOI | MR | Zbl
[4] Borie R.B., Parker R.G., Tovey C.A., “Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families”, Algorithmica, 7 (1992), 555–581 | DOI | MR | Zbl
[5] Kikuno T., Yoshida N., Kakuda Y., “A linear algorithm for the domination number of a series-parallel graph”, Disc. Appl. Math., 5 (1983), 299–311 | DOI | MR | Zbl
[6] Takamizawa K., Nishizeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallel graphs”, J. ACM, 29 (1982), 623–641 | DOI | MR | Zbl
[7] Duffin R.J., “Topology of series-parallel graphs”, J. Math. Anal. Appl., 10 (1965), 303–318 | DOI | MR | Zbl
[8] Valdes J., Tarjan R.E., Lawler E.L., “The recognition of series parallel digraphs”, SIAM J. Comput., 11 (1982), 298–313 | DOI | MR | Zbl