Design of a systolic array for computational solving of a nonstationary equation of heat conductivity
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 104-110
Voir la notice de l'article provenant de la source Math-Net.Ru
A systolic array of a ring architecture that consists of a given number $\Delta$ of homogeneous processor elements is designed. The array is destined to numerous solution of a nonstationari equation of heat conductivity by explicit net method. The local memory of processor elements does not depend on the parameters $N$ and $M$ that determine the number of mesh points, nor the number of processors $\Delta$. Time of solving the problem is determined by the function $\displaystyle\frac{M(N-3)}{\Delta}+\Delta+2M+1$ that has the minimum value for $\Delta=\sqrt{M(N-3)}$ (under the assumption that $\sqrt{M(N-3)}$ is an integer).
@article{TIMB_2007_15_2_a10,
author = {P. I. Sobolevskii},
title = {Design of a systolic array for computational solving of a nonstationary equation of heat conductivity},
journal = {Trudy Instituta matematiki},
pages = {104--110},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a10/}
}
TY - JOUR AU - P. I. Sobolevskii TI - Design of a systolic array for computational solving of a nonstationary equation of heat conductivity JO - Trudy Instituta matematiki PY - 2007 SP - 104 EP - 110 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a10/ LA - ru ID - TIMB_2007_15_2_a10 ER -
P. I. Sobolevskii. Design of a systolic array for computational solving of a nonstationary equation of heat conductivity. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 104-110. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a10/