General existence conditions for maximal elements of ordered sets
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that Arkhangelski principle of existence of top-ascending well-ordered chain is equivalent to the statement of Gajek–Zagrodny lemma. Both the criterium of nonemptyness and the criterium of cofinality for the subset of maximal elements of an ordered set are derived on the base of Arkhangelski principle.
@article{TIMB_2007_15_2_a0,
     author = {E. V. Gireiko and V. V. Gorokhovik},
     title = {General existence conditions for maximal elements of ordered sets},
     journal = {Trudy Instituta matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a0/}
}
TY  - JOUR
AU  - E. V. Gireiko
AU  - V. V. Gorokhovik
TI  - General existence conditions for maximal elements of ordered sets
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 3
EP  - 14
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a0/
LA  - ru
ID  - TIMB_2007_15_2_a0
ER  - 
%0 Journal Article
%A E. V. Gireiko
%A V. V. Gorokhovik
%T General existence conditions for maximal elements of ordered sets
%J Trudy Instituta matematiki
%D 2007
%P 3-14
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a0/
%G ru
%F TIMB_2007_15_2_a0
E. V. Gireiko; V. V. Gorokhovik. General existence conditions for maximal elements of ordered sets. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a0/

[1] Arkhangelskii A.V., Kantorovskaya teoriya mnozhestv, Izd-vo MGU, M., 1988

[2] Aleksandrov P.S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[3] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1981 | MR

[5] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981 | MR

[6] Harzheim E., Ordered sets, Springer, Berlin, 2005 | MR | Zbl

[7] Kiruta A.Ya., Rubinov A.M., Yanovskaya E.B., Optimalnyi vybor raspredelenii v slozhnykh sotsialno-ekonomicheskikh zadachakh, Nauka, L., 1980 | MR | Zbl

[8] Fishbern P., Teoriya poleznosti dlya prinyatiya reshenii, Nauka, M., 1978 | MR

[9] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990 | MR | Zbl

[10] Gajek L., Zagrodny D., “Countably orderable sets and their applications in optimization”, Optimization, 26 (1992), 287–301 | DOI | MR | Zbl

[11] Jahn J., Mathematical Vector Optimization in Partially Ordered Spaces, Peter Lang, Frankfurt–Bern–New York, 1986 | MR | Zbl

[12] Jahn J., “Existence theorems in vector optimization”, J. Optim. Theory Appl., 50 (1986), 397–406 | DOI | MR | Zbl

[13] Luc D.T., “An existence theorem in vector optimization”, Mathematics of Operations Research, 14 (1989), 693–699 | DOI | MR | Zbl

[14] Luc D.T., Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, 319, Springer Verlag, Berlin, 1989 | MR

[15] Sonntag Y., Zălinescu C., “Comparison of existence results for efficient points”, J. of Optimization Theory and Applications, 105:1 (2000), 161–188 | DOI | MR | Zbl

[16] Göpfert A., Tammer Chr., Riahi H., Zălinescu C., Variational Methods in Partially Ordered Spaces, CMS Books in Mathematics, 17, Springer Verlag, New York–Berlin–Heidelberg, 2003 | MR