On stability for a finite cooperative game with a generalized concept of equilibrium
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 47-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite cooperative game in the normal form with a parametric principle of optimality (the generalized concept of equilibrium). This principle is defined by the partitioning of the players into coalitions. In this situation, two extreme cases of this partitioning correspond to the lexicographically optimal situation and the Nash equilibrium situation, respectively. The analysis of stability for a set of generalized equilibrium situations under the perturbations of the coefficients of the linear payoff functions is performed.
@article{TIMB_2007_15_1_a5,
     author = {E. Gurevsky and V. A. Emelichev and A. A. Platonov},
     title = {On stability for a finite cooperative game with a generalized concept of equilibrium},
     journal = {Trudy Instituta matematiki},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a5/}
}
TY  - JOUR
AU  - E. Gurevsky
AU  - V. A. Emelichev
AU  - A. A. Platonov
TI  - On stability for a finite cooperative game with a generalized concept of equilibrium
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 47
EP  - 55
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a5/
LA  - ru
ID  - TIMB_2007_15_1_a5
ER  - 
%0 Journal Article
%A E. Gurevsky
%A V. A. Emelichev
%A A. A. Platonov
%T On stability for a finite cooperative game with a generalized concept of equilibrium
%J Trudy Instituta matematiki
%D 2007
%P 47-55
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a5/
%G ru
%F TIMB_2007_15_1_a5
E. Gurevsky; V. A. Emelichev; A. A. Platonov. On stability for a finite cooperative game with a generalized concept of equilibrium. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a5/