The group generated by round permutations of the cryptosystem BelT
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 15-21
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the group generated by all round permutations of the cryptosystem BelT is the alternating group of degree $2^{128}$. This result can be used for estimating security of the cryptosystem BelT and its modifications.
@article{TIMB_2007_15_1_a2,
author = {M. V. Velichko and A. A. Osinovskaya and I. D. Suprunenko},
title = {The group generated by round permutations of the cryptosystem {BelT}},
journal = {Trudy Instituta matematiki},
pages = {15--21},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/}
}
TY - JOUR AU - M. V. Velichko AU - A. A. Osinovskaya AU - I. D. Suprunenko TI - The group generated by round permutations of the cryptosystem BelT JO - Trudy Instituta matematiki PY - 2007 SP - 15 EP - 21 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/ LA - ru ID - TIMB_2007_15_1_a2 ER -
M. V. Velichko; A. A. Osinovskaya; I. D. Suprunenko. The group generated by round permutations of the cryptosystem BelT. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/