The group generated by round permutations of the cryptosystem BelT
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the group generated by all round permutations of the cryptosystem BelT is the alternating group of degree $2^{128}$. This result can be used for estimating security of the cryptosystem BelT and its modifications.
@article{TIMB_2007_15_1_a2,
     author = {M. V. Velichko and A. A. Osinovskaya and I. D. Suprunenko},
     title = {The group generated by round permutations of the cryptosystem {BelT}},
     journal = {Trudy Instituta matematiki},
     pages = {15--21},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/}
}
TY  - JOUR
AU  - M. V. Velichko
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - The group generated by round permutations of the cryptosystem BelT
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 15
EP  - 21
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/
LA  - ru
ID  - TIMB_2007_15_1_a2
ER  - 
%0 Journal Article
%A M. V. Velichko
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T The group generated by round permutations of the cryptosystem BelT
%J Trudy Instituta matematiki
%D 2007
%P 15-21
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/
%G ru
%F TIMB_2007_15_1_a2
M. V. Velichko; A. A. Osinovskaya; I. D. Suprunenko. The group generated by round permutations of the cryptosystem BelT. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a2/

[1] Agievich S.V., Galinskii V.A., Mikulich N.D., Kharin Yu.S., “Algoritm blochnogo shifrovaniya BelT”, Kompleksnaya zaschita informatsii, Tezisy dokl. VII Mezhdunar. konf., OIPI NAN Belarusi, Minsk, 2003, 95–97

[2] Agievich S.V., Galinskii V.A., Mikulich N.D., Kharin Yu.S., “Ob odnom algoritme blochnogo shifrovaniya”, Upravlenie zaschitoi informatsii, 6:4 (2002), 407–412

[3] Burnside W., Theory of groups of finite order, Cambridge University Press, Cambridge, 1911 | Zbl

[4] Suprunenko D.A., Gruppy podstanovok, Navuka i tekhnika, Minsk, 1996 | Zbl

[5] Kameron P.Dzh., “Konechnye gruppy podstanovok i konechnye prostye gruppy”, UMN, 38:3(231) (1983), 135–157 | MR | Zbl