Functional-differential equations in Hardy-type classes
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 105-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a conjugation problem for harmonic functions in multiply connected circular domains. The problem is rewritten in the form of the $\mathbb{R}$-linear boundary value problem which is solved in Hardy-type classes by using equivalent functional-differential equations.
@article{TIMB_2007_15_1_a11,
     author = {P. Dryga\v{s}},
     title = {Functional-differential equations in {Hardy-type} classes},
     journal = {Trudy Instituta matematiki},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/}
}
TY  - JOUR
AU  - P. Drygaš
TI  - Functional-differential equations in Hardy-type classes
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 105
EP  - 110
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/
LA  - en
ID  - TIMB_2007_15_1_a11
ER  - 
%0 Journal Article
%A P. Drygaš
%T Functional-differential equations in Hardy-type classes
%J Trudy Instituta matematiki
%D 2007
%P 105-110
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/
%G en
%F TIMB_2007_15_1_a11
P. Drygaš. Functional-differential equations in Hardy-type classes. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 105-110. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/

[1] Goncalves L.C., Kołodziej J.A., “Determination of effective thermal conductivity in fibrous composites with imperfect contact between constituents”, Int. Com. Heat and Mass Transf., 20 (1993), 111–121 | DOI

[2] Miloh T., Benveniste Y., “On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces”, Proc. Roy. Soc. Lond. A, 455 (1999), 2687–2706 | DOI | MR | Zbl

[3] Mityushev V.V., Rogosin S.V., Constructive methods for linear and nonlinear boundary value problems for analytic functions. Theory and Applications, Chapman Hall / CRC, Boca Raton, 2000 | MR | Zbl