Functional-differential equations in Hardy-type classes
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 105-110
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a conjugation problem for harmonic functions in multiply connected circular domains. The problem is rewritten in the form of the $\mathbb{R}$-linear boundary value problem which is solved in Hardy-type classes by using equivalent functional-differential equations.
@article{TIMB_2007_15_1_a11,
author = {P. Dryga\v{s}},
title = {Functional-differential equations in {Hardy-type} classes},
journal = {Trudy Instituta matematiki},
pages = {105--110},
year = {2007},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/}
}
P. Drygaš. Functional-differential equations in Hardy-type classes. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 105-110. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a11/
[1] Goncalves L.C., Kołodziej J.A., “Determination of effective thermal conductivity in fibrous composites with imperfect contact between constituents”, Int. Com. Heat and Mass Transf., 20 (1993), 111–121 | DOI
[2] Miloh T., Benveniste Y., “On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces”, Proc. Roy. Soc. Lond. A, 455 (1999), 2687–2706 | DOI | MR | Zbl
[3] Mityushev V.V., Rogosin S.V., Constructive methods for linear and nonlinear boundary value problems for analytic functions. Theory and Applications, Chapman Hall / CRC, Boca Raton, 2000 | MR | Zbl