A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 80-85
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for $k$-terminal recursively constructed hypergraphs the $2$-colorability problem: for a given hypergraph $H$ to find out whether there exists a coloring $f\colon V(H)\to\{1,2\}$ such that no edge of $H$ is monochromatic, can be solved in $O(n^3)$ time.
@article{TIMB_2006_14_2_a9,
author = {V. V. Lepin},
title = {A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs},
journal = {Trudy Instituta matematiki},
pages = {80--85},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/}
}
TY - JOUR AU - V. V. Lepin TI - A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs JO - Trudy Instituta matematiki PY - 2006 SP - 80 EP - 85 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/ LA - ru ID - TIMB_2006_14_2_a9 ER -
V. V. Lepin. A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 80-85. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/