Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2006_14_2_a9, author = {V. V. Lepin}, title = {A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs}, journal = {Trudy Instituta matematiki}, pages = {80--85}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/} }
TY - JOUR AU - V. V. Lepin TI - A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs JO - Trudy Instituta matematiki PY - 2006 SP - 80 EP - 85 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/ LA - ru ID - TIMB_2006_14_2_a9 ER -
V. V. Lepin. A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 80-85. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/
[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, M., 1982 | MR
[2] Zykov A.A., “Gipergrafy”, UMN, 29:6 (1974), 89–154 | MR | Zbl
[3] Beck J., “An algorithmic approach to the Lovǎsz local lemma”, J. Random Structures and Algorithms, 2:4 (1991), 343–365 | DOI | MR | Zbl
[4] Czumaj A., Scheideler C., “An algorithmic approach to the general Lovǎsz Local Lemma with applications to scheduling and satisfiability problems”, Proc. 32nd STOC, 2000, 38–47 | MR
[5] Czumaj A., Scheideler C., “Coloring non-uniform hypergraphs: A new algorithmic approach to the general Lovǎsz Local Lemma”, Proc. 11th SODA, 2000, 30–39 | MR | Zbl
[6] Erdős P., Lovász L., “Problems and results on 3-chromatic hypergraphs and some related questions”, Infinite and Finite Sets (to Paul Erdǒs on his 60th birthday), v. II, eds. A. Hajnal, R. Rado, and V.T. Sǎs, North-Holland, Amsterdam, 1975, 609–627 | MR
[7] Guruswami V., Hǎstad J., Sudan M., “Hardness of approximate hypergraph coloring”, Proc. 41st FOCS, 2000, 149–158 | MR
[8] Lovász L., “Coverings and colorings of hypergraphs”, Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, 1973, 3–12 | MR | Zbl
[9] Lu C-J., “Deterministic hypergraph coloring and its applications”, Proc. 2nd RANDOM, 1998, 35–46 | MR
[10] Radhakrishnan J., Srinivasan A., “Improved bounds and algorithms for hypergraph two-coloring”, Proc. 39th FOCS, 1998, 684–693