A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 80-85

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for $k$-terminal recursively constructed hypergraphs the $2$-colorability problem: for a given hypergraph $H$ to find out whether there exists a coloring $f\colon V(H)\to\{1,2\}$ such that no edge of $H$ is monochromatic, can be solved in $O(n^3)$ time.
@article{TIMB_2006_14_2_a9,
     author = {V. V. Lepin},
     title = {A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs},
     journal = {Trudy Instituta matematiki},
     pages = {80--85},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 80
EP  - 85
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/
LA  - ru
ID  - TIMB_2006_14_2_a9
ER  - 
%0 Journal Article
%A V. V. Lepin
%T A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs
%J Trudy Instituta matematiki
%D 2006
%P 80-85
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/
%G ru
%F TIMB_2006_14_2_a9
V. V. Lepin. A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 80-85. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a9/