The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 73-79
Voir la notice de l'article provenant de la source Math-Net.Ru
For a completely continuous non-negative operator $A$ acting in the space $L_p(\Omega)$ or $C(\Omega)$ the existence of $k$ positive eigenvalues is proved under some additional conditions on its $j$-th $(1$ exterior power $\wedge^jA$. For the case where the operator $A$ is completely indecomposable, the simplicity of all non-zero eigenvalues is proved and the connection between the imprimitivity indices of $A$ and $\wedge^jA$ is examined.
@article{TIMB_2006_14_2_a8,
author = {O. Y. Kushel},
title = {The {Gantmakher--Krein} theorem for completely indecomposable operators in spaces of functions},
journal = {Trudy Instituta matematiki},
pages = {73--79},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/}
}
TY - JOUR AU - O. Y. Kushel TI - The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions JO - Trudy Instituta matematiki PY - 2006 SP - 73 EP - 79 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/ LA - ru ID - TIMB_2006_14_2_a8 ER -
O. Y. Kushel. The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 73-79. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/