The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 73-79

Voir la notice de l'article provenant de la source Math-Net.Ru

For a completely continuous non-negative operator $A$ acting in the space $L_p(\Omega)$ or $C(\Omega)$ the existence of $k$ positive eigenvalues is proved under some additional conditions on its $j$-th $(1$ exterior power $\wedge^jA$. For the case where the operator $A$ is completely indecomposable, the simplicity of all non-zero eigenvalues is proved and the connection between the imprimitivity indices of $A$ and $\wedge^jA$ is examined.
@article{TIMB_2006_14_2_a8,
     author = {O. Y. Kushel},
     title = {The {Gantmakher--Krein} theorem for completely indecomposable operators in spaces of functions},
     journal = {Trudy Instituta matematiki},
     pages = {73--79},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/}
}
TY  - JOUR
AU  - O. Y. Kushel
TI  - The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 73
EP  - 79
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/
LA  - ru
ID  - TIMB_2006_14_2_a8
ER  - 
%0 Journal Article
%A O. Y. Kushel
%T The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions
%J Trudy Instituta matematiki
%D 2006
%P 73-79
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/
%G ru
%F TIMB_2006_14_2_a8
O. Y. Kushel. The Gantmakher--Krein theorem for completely indecomposable operators in spaces of functions. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 73-79. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a8/