Worst-case control policies with intermediate correct moments
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 82-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a terminal linear control system subject to unknown but bounded disturbances. For this system, we consider the problem of constructing worst-case feedback control policy which is allowed to be corrected at $m$ fixed intermediate time moments. It is shown that computation of the policy is equivalent to solving a corresponding convex mathematical programming problem with $m-1$ decision variables. Based on the solution of the mathematical programming problem we derive simple explicit rules for constructing the optimal control policy. The policy should guarantee that, for all admissible uncertainties, the terminal system state lies in a prescribed neighborhood of a given state $z_*$ at a given final moment, and system state at $m$ fixed intermediate time moments $t_i$, $i=1,\dots,m$, lies in prescribed neighborhoods $\delta_i$ of a constructed system states $y_i^0$ and the value of the cost function takes the best guaranteed value.
@article{TIMB_2006_14_1_a9,
     author = {O. I. Kostyukova and M. A. Kurdina},
     title = {Worst-case control policies with intermediate correct moments},
     journal = {Trudy Instituta matematiki},
     pages = {82--93},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a9/}
}
TY  - JOUR
AU  - O. I. Kostyukova
AU  - M. A. Kurdina
TI  - Worst-case control policies with intermediate correct moments
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 82
EP  - 93
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a9/
LA  - ru
ID  - TIMB_2006_14_1_a9
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%A M. A. Kurdina
%T Worst-case control policies with intermediate correct moments
%J Trudy Instituta matematiki
%D 2006
%P 82-93
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a9/
%G ru
%F TIMB_2006_14_1_a9
O. I. Kostyukova; M. A. Kurdina. Worst-case control policies with intermediate correct moments. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a9/

[1] Lee J.H., Yu Z., “Worst-case formulation of model predictive control for systems with bounded parameters”, Automatica, 33:5 (1997), 763–781 | DOI | MR | Zbl

[2] Scokaert P.M., Mayne D.Q., “Min-max feedback model predictive control for constrained linear systems”, IEEE Transactions on Automatic Control, 43:8 (1998), 1136–1142 | DOI | MR | Zbl

[3] Bemporad A, Borrelli F, Morari M., “Min-Max control of constrained uncertain discrete-time linear systems”, IEEE Transactions on Automatic Control, 48:9 (2003), 1600–1606 | DOI | MR

[4] Kothare M.V., Balakrishnan V., Morari M., “Robust constrained model predictive control using linear matrix inequalities”, Automatica, 32:10 (1996), 1361–1379 | DOI | MR | Zbl

[5] Magni L., De Nicolao G., Scattolini R., Allgöwer F., “Robust receding horizon control for non-linear discrete-time system”, Proceedings of the 15th IFAC World Congress, Spain, 2002

[6] Kerrigan E., Maciejowski J.M., “Feedback min-max model predictive control using a single linear program: Robust stability and explicit solution”, International Journal of Robust and Nonlinear Control, 14 (2004), 395–413 | DOI | MR | Zbl

[7] Matveev A.S., Yakubovich V.A., “Nevypuklaya globalnaya optimizatsiya v teorii optimalnogo upravleniya”, Itogi nauki i tekhniki. Seriya “Sovremennaya matematika i ee prilozheniya”, 60, 1998, 128–175 | Zbl

[8] Savkin A., Skafidas E., Evans R., “Robust output feedback stabilizability via controller switching”, Automatica, 35 (1999), 69–74 | DOI | MR | Zbl

[9] Kostina E.A., Kostyukova O.I., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Mathematical Programming, 107:1-2 (2006), 131–153 | DOI | MR | Zbl