Generalized Poincar\'e--Sobolev inequality on metric spaces
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we prove the inequalities of the form $$ |f(x_0)-f_{B(x_0,r)}|\le c\eta(r)(\mathcal{S}_\eta f(x_0))^{1-\alpha p/\gamma}\biggl(\,{\int\limits_{B(x_0,r)}\mspace{-31.5mu}{-}\mspace{11.5mu}}(\mathcal{S}_\eta f)^p\,d\mu\biggr)^{\alpha/\gamma} $$ in Lebesgue points of the function $f\in L_{\mathrm{loc}}^1(X)$. Here $0\alpha\gamma/p$, $\eta(t)t^{-\alpha}\uparrow$, $\eta(t)t^{-\gamma/p}\downarrow$ $$ \mathcal{S}_\eta f(x)=\sup_{B\ni x}\frac{1}{\eta(r)}{\int\limits_B\hspace{-4.5mm}{-}\mspace{7mu}}|f-f_B|\,d\mu, $$ $B=B(x,r)$ are balls in metric space (or in the homogeneous type space) $X$ with regular Borel measure $\mu$ satisfying the doubling condition of order $\gamma>0$. We also give some other forms of such inequalities that similar to classic Poincaré inequality and show out their applications to the embedding theorems of the Sobolev type and to the “selfimproving” property of generalizad Poincaré inequality.
@article{TIMB_2006_14_1_a6,
     author = {I. A. Ivanishko and V. G. Krotov},
     title = {Generalized {Poincar\'e--Sobolev} inequality on metric spaces},
     journal = {Trudy Instituta matematiki},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a6/}
}
TY  - JOUR
AU  - I. A. Ivanishko
AU  - V. G. Krotov
TI  - Generalized Poincar\'e--Sobolev inequality on metric spaces
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 51
EP  - 61
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a6/
LA  - ru
ID  - TIMB_2006_14_1_a6
ER  - 
%0 Journal Article
%A I. A. Ivanishko
%A V. G. Krotov
%T Generalized Poincar\'e--Sobolev inequality on metric spaces
%J Trudy Instituta matematiki
%D 2006
%P 51-61
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a6/
%G ru
%F TIMB_2006_14_1_a6
I. A. Ivanishko; V. G. Krotov. Generalized Poincar\'e--Sobolev inequality on metric spaces. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a6/

[1] Calderon A.P., “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR

[2] Calderon A.P., Scott R., “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[3] DeVore R., Sharpley R., “Maximal functions measuring local smoothness”, Memoirs of AMS, 47, 1984, 1–101 | MR

[4] Hajłasz P., “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5 (1996), 403–415 | MR | Zbl

[5] Franchi B., Hajłasz P., Koskela P., “Definitions of Sobolev classes on metric spaces”, Ann. Inst. Fourier (Grenoble), 49:6 (1999), 1903–1924 | MR | Zbl

[6] Hajłasz P., “Sobolev spaces on metric-measure spaces”, Contemporary Math., 338 (2003), 173–218 | MR | Zbl

[7] Hajłasz P., Kinnunen J., “Hölder quasicontinuity of Sobolev functions on metric spaces”, Revista Mat. Iberoam., 14:3 (1998), 601–622 | MR | Zbl

[8] Hajłasz P., Koskela P., “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, 2000, 1–115 | MR

[9] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR

[10] Hu J., “A note on Hajłasz-Sobolev spaces on fractals”, J. Math. Anal. Appl., 280:1 (2003), 91–101 | DOI | MR | Zbl

[11] Yang D., “New characterizations of Hajłasz-Sobolev spaces on metric spaces”, Science of China, 46:5 (2003), 1–15 | MR

[12] Kolyada V.I., “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:3 (1987), 534–537 | MR | Zbl

[13] Kolyada V.I., “Estimates of maximal functions measuring local smoothness”, Analisys Math., 25 (1999), 277–300 | DOI | MR | Zbl

[14] Ivanishko I.A., “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Trudy Instituta matematiki, 12:1 (2004), 64–67

[15] Coifman R.R., Weiss G., Analyse harmonique non-commutative sur certain espaces homogenés, Lecture Notes in Math., 242, Springer-Verlag, Berlin; Heidelberg; New York, 1971 | MR | Zbl

[16] Ivanishko I.A., “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Mat. zametki, 77:6 (2005), 937–941 | MR | Zbl