Piece-wise affine scheduling function
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 23-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to the problem of algorithms transformation for parallelization and improving of data locality. Piece-wise affine scheduling functions are introduced. Formal constraints which these functions are to satisfy are investigated.
@article{TIMB_2006_14_1_a2,
     author = {E. V. Adutskevich and N. A. Likhoded},
     title = {Piece-wise affine scheduling function},
     journal = {Trudy Instituta matematiki},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a2/}
}
TY  - JOUR
AU  - E. V. Adutskevich
AU  - N. A. Likhoded
TI  - Piece-wise affine scheduling function
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 23
EP  - 29
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a2/
LA  - ru
ID  - TIMB_2006_14_1_a2
ER  - 
%0 Journal Article
%A E. V. Adutskevich
%A N. A. Likhoded
%T Piece-wise affine scheduling function
%J Trudy Instituta matematiki
%D 2006
%P 23-29
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a2/
%G ru
%F TIMB_2006_14_1_a2
E. V. Adutskevich; N. A. Likhoded. Piece-wise affine scheduling function. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a2/

[1] Voevodin V.V., Voevodin Vl.V., Parallelnye vychisleniya, Ucheb. posobie, SPb., 2002 | Zbl

[2] Feautrier P., “Some efficient solutions to the affine scheduling problem, part 1, part 2”, Int. J. of Parallel Programming, 21:5 (1992), 313–348 ; 6, 389–420 | DOI | MR | MR | Zbl

[3] Darte A., “Mathematical tools for loop transformations: from systems of uniform recurrence equations to the polytope model”, Algorithms for Parallel Processing, IMA Volumes in Mathematics and its Applications, 105, 1999, 147–183 | MR | Zbl

[4] Darte A., Silber G.-A., Vivien F., “Combining retiming and scheduling techniques for loop parallelization and loop tiling”, Parallel Processing Letters, 7:4 (1997), 379–392 | DOI

[5] Lim A.W., Lam M.S., “Maximizing parallelism and minimizing synchronization with affine partitions”, Parallel Computing, 24:3, 4 (1998), 445–475 | DOI | MR | Zbl

[6] Lim A.W., Lam M.S., “An affine partitioning algorithm to maximize parallelism and minimize communication”, Proceedings of the 1-sth ACM SIGARCH International Conference on Supercomputing, 1999

[7] Bakhanovich S.V., Likhoded N.A., “Vektornaya funktsiya taimirovaniya dlya prostranstvenno-vremennykh otobrazhenii”, Dokl. NAN Belarusi, 44:4 (2000), 50–52 | MR | Zbl

[8] Adutskevich E.V., Bakhanovich S.V.,Likhoded N.A., “Usloviya polucheniya soglasovannogo taimirovaniya i raspredeleniya operatsii i dannykh mezhdu protsessorami”, Tr. mezhdunar. nauch. konf. “Superkompyuternye sistemy i ikh primenenie” (SSA'2004), Minsk, 2004, 160–164

[9] Likhoded N.A., Bakhanovich S.V., Zherelo A.V., “Poluchenie affinnykh preobrazovanii dlya uluchsheniya lokalnosti gnezd tsiklov”, Programmirovanie, 2005, no. 5, 73–80 | MR

[10] Adutskevich E.V., Likhoded N.A., Sobolevskii P.I., “Rasparallelivanie affinnykh gnezd tsiklov pri zadannom raspredelenii operatsii po protsessoram”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2005, no. 3, 105–111 | MR