Uniform Limit Theorems under length-biased sampling and type I censoring
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 93-106
Voir la notice de l'article provenant de la source Math-Net.Ru
In recent years, in view of theory of empirical processes, authors have become more interested in the uniform analogue of the three fundamental theorems: the uniform law of large numbers of Glivenko-Cantelli type, the uniform central limit theorem for Donsker type and the functional law of the iterated logarithm (LIL). In this paper, under the bracketing entropy conditions, the uniform law of large numbers, uniform central limit theorem and the uniform LIL of Strassen type have been investigated in the case of length-biased and type I censoring.
Keywords:
Bracketing entropy, Length-biased sampling, Uniform limit theorems.
@article{THSP_2020_25_2_a9,
author = {Raheleh Zamini and Sarah Jomhoori},
title = {Uniform {Limit} {Theorems} under length-biased sampling and type {I} censoring},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {93--106},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/}
}
TY - JOUR AU - Raheleh Zamini AU - Sarah Jomhoori TI - Uniform Limit Theorems under length-biased sampling and type I censoring JO - Teoriâ slučajnyh processov PY - 2020 SP - 93 EP - 106 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/ LA - en ID - THSP_2020_25_2_a9 ER -
Raheleh Zamini; Sarah Jomhoori. Uniform Limit Theorems under length-biased sampling and type I censoring. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 93-106. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/