Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_2_a9, author = {Raheleh Zamini and Sarah Jomhoori}, title = {Uniform {Limit} {Theorems} under length-biased sampling and type {I} censoring}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {93--106}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/} }
TY - JOUR AU - Raheleh Zamini AU - Sarah Jomhoori TI - Uniform Limit Theorems under length-biased sampling and type I censoring JO - Teoriâ slučajnyh processov PY - 2020 SP - 93 EP - 106 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/ LA - en ID - THSP_2020_25_2_a9 ER -
Raheleh Zamini; Sarah Jomhoori. Uniform Limit Theorems under length-biased sampling and type I censoring. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 93-106. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a9/
[1] M. Asgharian, C. E. M'Lan, D. B. Wolfson, “Length-biased sampling with right-censoring: an unconditional approach”, J. Amer. Statist. Assoc., 97 (2002), 201–209
[2] J. Bae, S. Kim, “The empirical LIL for the Kaplan-Meier integral process”, Bull. Korean Math. Soc., 40:2 (2003a), 269–279
[3] J. Bae, S. Kim, “The uniform law of large numbers for the Kaplan-Meier integral process”, Bull. Austral. Math., 67 (2003b), 459–465
[4] J. Bae, S. Kim, “The uniform central limit theorem for the Kaplan-Meier integral process”, Bull. Austral. Math., 67 (2003c), 467–480
[5] J. DeHardt, “Generalizations of the Glivenko-Cantelli theorem”, Ann. Math. Stat., 42 (1971), 2050–2055
[6] J. De U$\tilde{n}$a-$\acute{A}$lvarez, “Nonparametric estimation under length-biased sampling and Type I censoring: a moment based approach”, Ann. Inst. Statist. Math., 56 (2004), 667–681 J. De U$\tilde{n}$a-$\acute{A}$lvarez, Nonparametric estimation under length-biased sampling and Type I censoring: a moment based approach, Ann. Inst. Statist. Math. 56 (2004), 667–681.
[7] R. M. Dudley, “Central limit theorems for empirical measures”, Ann. Probab., 6:6 (1978), 899–929
[8] R. M. Dudley, W. Philipp, “Invariance principles for sums of Banach space valued random elements and empirical processes”, Z. Wahrsch. Verw. Gebiete, 62 (1983), 509–552
[9] J. Hoffmann-Jörgensen, Stochastic processes on Polish spaces, Aarhus Universite, Matematisk Institut, Aarhus, 1991
[10] J. Kuelbs, R. M. Dudley, “Log log law for empirical measures”, Ann. Probab, 8 (1980), 405–418
[11] T. Lancaster, The econometric analysis of truncation data, Cambridge University Press, Cambridge, 1990
[12] M. Ossiander, “A central limit theorem under metric entropy with $L_2$ bracketing”, Ann. Probab., 15 (1987), 897–919
[13] G. Pisier, Le theorem de la limite centrale et la loi du logarithme itere dans les espaces de Banach, Seminaire Maurey-Schwarz 1975-1976 exposes Nos. 3 et 4, 1975
[14] D. Pollard, “Empirical processes: theory and applications”, Regional conference series in Probability and Statistics, 2, Inst. Math. Statist, Hayward CA, 1990
[15] S. Van de Geer, Applications of empirical process theory, Cambridge Series in Statistical and probabilistic mathematics, Cambridge University Press, Cambridge, U. K., 2000
[16] A. W. Van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes, Springer, New York, 1996
[17] B. Van Es, C. A. J. Klaassen, K. Oudshoorn, “Survival analysis under cross-sectional sampling: Length bias and multiplicative censoring”, J. Stat. Plann. Inf., 91 (2000), 295–312
[18] M.-C. Wang, “Nonparametric estimation from cross-sectional survival data”, J. American Stat. Assoc., 86 (1991), 130–143
[19] B. B. Winter, A. F$\ddot{o}$ldes, “A product-limit estimator for use with length-biased data”, Canadian J. Stat., 16 (1988), 337–355