@article{THSP_2020_25_2_a7,
author = {A. Pilipenko and O. O. Prykhodko},
title = {On a limit behaviour of a random walk penalised in the lower half-plane},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {81--88},
year = {2020},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a7/}
}
A. Pilipenko; O. O. Prykhodko. On a limit behaviour of a random walk penalised in the lower half-plane. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a7/
[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge University Press, Cambridge, 1987
[2] P. Billingsley, Convergence of Probability Measures, Wiley, 1999
[3] A. Gut, Probability: A Graduate Course, Springer, New York, 2013
[4] C. Hahn, Z. R. Kann, J. A. Faust, J. L. Skinner, G. M. Nathanson, “Super-Maxwellian helium evaporation from pure and salty water”, The Journal of Chemical Physics, 144(4):044707, January (2016)
[5] A. M. Johnson, D. K. Lancaster, J. A. Faust, C. Hahn, A. Reznickova, G. M. Nathanson, “Ballistic evaporation and solvation of helium atoms at the surfaces of protic and hydrocarbon liquids”, The Journal of Physical Chemistry Letters, 5:21 (October 2014), 3914–3918
[6] Z. R. Kann, J. L. Skinner, “Sub- and super-Maxwellian evaporation of simple gases from liquid water”, The Journal of Chemical Physics, 144:15:154701 (April 2016)
[7] J. L. Menaldi, “Stochastic variational inequality for reflected diffusion”, Indiana University mathematics journal, 32:5 (1983), 733–744
[8] A. Pilipenko, An introduction to stochastic differential equations with reflection, Potsdam:Universitatsverlag, 09, 2014
[9] A. Pilipenko, Yu. Prykhodko, “Limit behaviour of a simple random walk with non-integrable jump from a barrier”, Theory of Stochastic Processes, 19 (35):1 (2014), 52–61