Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_2_a6, author = {Vitalii V. Konarovskyi}, title = {On number of particles in coalescing-fragmentating {Wasserstein} dynamics}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {74--80}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/} }
Vitalii V. Konarovskyi. On number of particles in coalescing-fragmentating Wasserstein dynamics. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 74-80. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/
[1] Leszek Gawarecki, Vidyadhar Mandrekar, Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations, Probability and its Applications, (New York), Springer, Heidelberg, 2011
[2] Chris Howitt, Jon Warren, “Consistent families of {B}rownian motions and stochastic flows of kernels”, Ann. Probab., 37:4 (2009), 1237–1272
[3] Nobuyuki Ikeda, Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, 24, second ed., North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989
[4] Vitalii Konarovskyi, “{C}oalescing-{F}ragmentating {W}asserstein {D}ynamics: particle approach”, 2017, arXiv: 1711.03011
[5] Vitalii Konarovskyi, “On asymptotic behavior of the modified {A}rratia flow”, Electron. J. Probab., 22:19, 31 (2017)
[6] Vitalii Konarovskyi, “A system of coalescing heavy diffusion particles on the real line”, Ann. Probab., 45:5 (2017), 3293–3335
[7] Vitalii Konarovskyi, Victor Marx, “On conditioning Brownian particles to coalesce”, 2020, arXiv: 2008.02568
[8] Vitalii Konarovskyi, Max von Renesse, “Reversible {C}oalescing-{F}ragmentating {W}asserstein {D}ynamics on the {R}eal {L}ine”, 2017, arXiv: 1709.02839
[9] Vitalii Konarovskyi, Max-K. von Renesse, “Modified massive {A}rratia flow and {W}asserstein diffusion”, Comm. Pure Appl. Math., 72:4 (2019), 764–800
[10] Victor Marx, “A new approach for the construction of a {W}asserstein diffusion”, Electron. J. Probab., 23:124, 54. (2018)
[11] Daniel Revuz, Marc Yor, Continuous martingales and {B}rownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, third ed., Springer-Verlag, Berlin, 1999
[12] Max-K. von Renesse, Karl-Theodor Sturm, “Entropic measure and {W}asserstein diffusion”, Ann. Probab., 37:3 (2009), 1114–1191