On number of particles in coalescing-fragmentating Wasserstein dynamics
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 74-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of sticky-reflected Brownian particles on the real line proposed in [4]. The model is a modification of the Howitt-Warren flow but now the diffusion rate of particles is inversely proportional to the mass which they transfer. It is known that the system consists of a finite number of distinct particles for almost all times. In this paper, we show that the system also admits an infinite number of distinct particles on a dense subset of the time interval if and only if the function responsible for the splitting of particles takes an infinite number of values.
Keywords: Sticky-reflected particle system, modified massive Arratia flow, infinite dimensional singular SDE.
@article{THSP_2020_25_2_a6,
     author = {Vitalii V. Konarovskyi},
     title = {On number of particles in coalescing-fragmentating {Wasserstein} dynamics},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/}
}
TY  - JOUR
AU  - Vitalii V. Konarovskyi
TI  - On number of particles in coalescing-fragmentating Wasserstein dynamics
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 74
EP  - 80
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/
LA  - en
ID  - THSP_2020_25_2_a6
ER  - 
%0 Journal Article
%A Vitalii V. Konarovskyi
%T On number of particles in coalescing-fragmentating Wasserstein dynamics
%J Teoriâ slučajnyh processov
%D 2020
%P 74-80
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/
%G en
%F THSP_2020_25_2_a6
Vitalii V. Konarovskyi. On number of particles in coalescing-fragmentating Wasserstein dynamics. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 74-80. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/