On number of particles in coalescing-fragmentating Wasserstein dynamics
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 74-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of sticky-reflected Brownian particles on the real line proposed in [4]. The model is a modification of the Howitt-Warren flow but now the diffusion rate of particles is inversely proportional to the mass which they transfer. It is known that the system consists of a finite number of distinct particles for almost all times. In this paper, we show that the system also admits an infinite number of distinct particles on a dense subset of the time interval if and only if the function responsible for the splitting of particles takes an infinite number of values.
Keywords: Sticky-reflected particle system, modified massive Arratia flow, infinite dimensional singular SDE.
@article{THSP_2020_25_2_a6,
     author = {Vitalii V. Konarovskyi},
     title = {On number of particles in coalescing-fragmentating {Wasserstein} dynamics},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/}
}
TY  - JOUR
AU  - Vitalii V. Konarovskyi
TI  - On number of particles in coalescing-fragmentating Wasserstein dynamics
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 74
EP  - 80
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/
LA  - en
ID  - THSP_2020_25_2_a6
ER  - 
%0 Journal Article
%A Vitalii V. Konarovskyi
%T On number of particles in coalescing-fragmentating Wasserstein dynamics
%J Teoriâ slučajnyh processov
%D 2020
%P 74-80
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/
%G en
%F THSP_2020_25_2_a6
Vitalii V. Konarovskyi. On number of particles in coalescing-fragmentating Wasserstein dynamics. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 74-80. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a6/

[1] Leszek Gawarecki, Vidyadhar Mandrekar, Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations, Probability and its Applications, (New York), Springer, Heidelberg, 2011

[2] Chris Howitt, Jon Warren, “Consistent families of {B}rownian motions and stochastic flows of kernels”, Ann. Probab., 37:4 (2009), 1237–1272

[3] Nobuyuki Ikeda, Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, 24, second ed., North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989

[4] Vitalii Konarovskyi, “{C}oalescing-{F}ragmentating {W}asserstein {D}ynamics: particle approach”, 2017, arXiv: 1711.03011

[5] Vitalii Konarovskyi, “On asymptotic behavior of the modified {A}rratia flow”, Electron. J. Probab., 22:19, 31 (2017)

[6] Vitalii Konarovskyi, “A system of coalescing heavy diffusion particles on the real line”, Ann. Probab., 45:5 (2017), 3293–3335

[7] Vitalii Konarovskyi, Victor Marx, “On conditioning Brownian particles to coalesce”, 2020, arXiv: 2008.02568

[8] Vitalii Konarovskyi, Max von Renesse, “Reversible {C}oalescing-{F}ragmentating {W}asserstein {D}ynamics on the {R}eal {L}ine”, 2017, arXiv: 1709.02839

[9] Vitalii Konarovskyi, Max-K. von Renesse, “Modified massive {A}rratia flow and {W}asserstein diffusion”, Comm. Pure Appl. Math., 72:4 (2019), 764–800

[10] Victor Marx, “A new approach for the construction of a {W}asserstein diffusion”, Electron. J. Probab., 23:124, 54. (2018)

[11] Daniel Revuz, Marc Yor, Continuous martingales and {B}rownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, third ed., Springer-Verlag, Berlin, 1999

[12] Max-K. von Renesse, Karl-Theodor Sturm, “Entropic measure and {W}asserstein diffusion”, Ann. Probab., 37:3 (2009), 1114–1191