Asymptotics of error probabilities of optimal tests
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 25-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider first and second error probabilities of asymptotically optimal tests (Neyman-Pearson, minimax, Bayesian) when two simple hypotheses $H^{t}_{1}$ and $H^{t}_{2}$ parametrized by time $t \ge 0$ are tested under the observation $X^t$ of arbitrary nature. The paper provides details on the conditions of asymptotic decrease of probabilities of optimal criteria errors determined by $\alpha$ type Hellinger integral between measures $P^{t}_{1}$ and $P^{t}_{2}$, demonstrating that in the case of minimax and Bayesian criteria it is sufficient to investigate Hellinger integral, when $\alpha \in \left( 0, 1 \right)$, and in the case of Neyman-Pearson criterion it is observed only in the environment of point $\alpha=1$. Whereas Kullback-Leibler information distance is always larger than Chernoff distance; we discover that, in the case of Neyman-Pearson criterion, the probability of type II error decreases faster than in the cases of minimax or Bayesian criteria. This is proven by the examples of marked point processes of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal process presented at the end of the paper.
Keywords: Hellinger integral, Neyman-Pearson test, minimax test, Bayesian test, Kullback-Leibler information, Chernoff information.
@article{THSP_2020_25_2_a3,
     author = {V. Kani\v{s}auskas and K. Kani\v{s}auskien\`e},
     title = {Asymptotics of error probabilities of optimal tests},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a3/}
}
TY  - JOUR
AU  - V. Kanišauskas
AU  - K. Kanišauskienè
TI  - Asymptotics of error probabilities of optimal tests
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 25
EP  - 36
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a3/
LA  - en
ID  - THSP_2020_25_2_a3
ER  - 
%0 Journal Article
%A V. Kanišauskas
%A K. Kanišauskienè
%T Asymptotics of error probabilities of optimal tests
%J Teoriâ slučajnyh processov
%D 2020
%P 25-36
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a3/
%G en
%F THSP_2020_25_2_a3
V. Kanišauskas; K. Kanišauskienè. Asymptotics of error probabilities of optimal tests. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 25-36. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a3/