Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_2_a2, author = {A. A. Dorogovtsev and I. I. Nishchenko}, title = {Loop-erased random walks associated with {Markov} processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {15--24}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a2/} }
A. A. Dorogovtsev; I. I. Nishchenko. Loop-erased random walks associated with Markov processes. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a2/
[1] G. Lawler, “A self-avoiding random walk”, Duke Math. J., 47 (1980), 655–695
[2] P. Diaconis, M. Shahshahani, “Time to reach stationarity in the Bernoulli-Laplace diffuion model”, SIAM J.Math.Anal., 18:1 (1987), 208–218
[3] Y. Peres, D. Revelle, “Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs”, arXiv: 0410430v2[math.PR](2005)
[4] K. Yoshihara, “The Borel-Cantelli Lemma for strong mixing sequences of events and their applications to LIL”, Kodai Math. J., 2:2 (1979), 148–157