Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_2_a1, author = {Jasmina {\DJ}or{\dj}evi\'c and Andrey Dorogovtsev}, title = {Clark representation formula for the solution to equation with interaction}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {9--14}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a1/} }
TY - JOUR AU - Jasmina Đorđević AU - Andrey Dorogovtsev TI - Clark representation formula for the solution to equation with interaction JO - Teoriâ slučajnyh processov PY - 2020 SP - 9 EP - 14 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a1/ LA - en ID - THSP_2020_25_2_a1 ER -
Jasmina Đorđević; Andrey Dorogovtsev. Clark representation formula for the solution to equation with interaction. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 9-14. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a1/
[1] J. M. C. Clark, “The representation of functionals of Brownian motion by stochastic integrals”, Ann. Math. Statist., 41:4 (1970), 1282–1295
[2] A. A. Dorogovtsev, Meroznachnye protsessy i stokhasticheskie potoki [Measure-valued processes and stochastic flows], Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications, 66, Institut Matematiki, Kiev, 2007 (Russian)
[3] J. Ðorđević, S. Jankovic, “On a class of backward stochastic Volterra integral equations”, Applied Mathematics Letters, 26 (2013), 1192–1197
[4] T. Komatsu, “On the partial hypoellipticity of SDEs on Hilbert spaces”, Theory of Stochastic Processes, 10 (26):3-4 (2004), 67–73
[5] D. Nualart, The Malliavin Calculus and Related Topics, eds. 2nd ed., Springer, 2006
[6] G. Pisier, Martingales in Banach Spaces, Cambridge Univ. Press, 2016
[7] S. Janković, M. Jovanović, J. Ðorđević, “Perturbed backward stochastic differential equations”, Mathematical and Computer Modeling, 55 (2012), 1734–1745