Progressive projection and log-optimal investment in the frictionless market
Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 37-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce notion of progressive projection, closely related to the extended predictable projection. This notion is flexible enough to help us treat the problem of log-optimal investment without transaction costs almost exhaustively in case when the rate of return is not observed. We prove some results saying that the semimartingale property of a continuous process is preserved when changing the filtration to the one generated by the process under very general conditions. We also had to introduce a very useful and flexible notion of so called enriched filtration.
Keywords: Log-optimal investment, progressive projection, filtering.
@article{THSP_2020_25_1_a2,
     author = {P. Dost\'al and T. Mach},
     title = {Progressive projection and log-optimal investment in the frictionless market},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {37--77},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a2/}
}
TY  - JOUR
AU  - P. Dostál
AU  - T. Mach
TI  - Progressive projection and log-optimal investment in the frictionless market
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 37
EP  - 77
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a2/
LA  - en
ID  - THSP_2020_25_1_a2
ER  - 
%0 Journal Article
%A P. Dostál
%A T. Mach
%T Progressive projection and log-optimal investment in the frictionless market
%J Teoriâ slučajnyh processov
%D 2020
%P 37-77
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a2/
%G en
%F THSP_2020_25_1_a2
P. Dostál; T. Mach. Progressive projection and log-optimal investment in the frictionless market. Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 37-77. http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a2/

[1] P. H. Algoet, T. M. Cover, “Asymptotic optimality and asymptotic equipartition properties of log-optimum investment”, Ann. Probab., 16:2 (1988), 876–898 | DOI | MR

[2] A. Bain, D. Crisan, Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability, 60, Springer, New York, 2009 | DOI | MR

[3] R. Bell, T. M. Cover, “Game-theoretic optimal portfolios”, Manage. Sci., 34:6 (1998), 724–733 | DOI | MR

[4] L. Breiman, “Optimal gambling system for flavorable games”, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1, eds. J. Neyman, ed., Univ. of Calif. Press, Berkley, 1961, 65–78 | MR

[5] S. Browne, W. Whitt, “Portfolio choice and the Bayesian Kelly criterion”, Adv. Appl. Probab., 28:4 (1996), 1145–1176 | DOI | MR

[6] D. Crisan, M. Kouritzin, J. Xiong, “Nonlinear filtering with signal dependent observation noise”, Electron. J. Probab., 14:63 (2009), 1863–1883 | DOI | MR

[7] D. Crisan, S. Ortiz-Latorre, “A high order time discretization of the solution of the non-linear filtering problem”, Stoch. PDE: Anal. Comp., 2019 | DOI | MR

[8] P. Dostál, “A note on weak convergence on martingale measures”, Acta Univ. Carol., Math. Phys., 43:1 (2002), 3–12 | MR

[9] P. Dostál, J. Klůjová, “Log-Optimal Investment in the Long Run with Proportional Transaction Costs When Using Shadow Price”, Kybernetika, 51:4 (2015), 588–628 | MR

[10] J. Dupačová, J. Hurt, J. Štěpán, Stochastic Modelling in Economics and Finance, Kluwer Academic Publishers, New York, 2003 | MR

[11] M. Fujisaki, G. Kallianpur, H. Kunita, “Stochastic differential equations for the non linear filtering problem”, Osaka J. Math., 9:1 (1972), 19–40 | MR

[12] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, Heidelberg, 2003 | MR

[13] O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York, 1997 | MR

[14] G. Kallianpur, Stochastic Filtering Theory, Springer-Verlag, New York, 1980 | MR

[15] G. Kallianpur, C. Striebel, “Estimation of Stochastic Systems: Arbitrary System Process with Additive White Noise Observation Errors”, The Annals of Mathematical Statistics, 39:3 (1968), 785–801 | DOI | MR

[16] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, Journal of Basic Engineering, 82:1 (1960), 35–45 | DOI | MR

[17] R. E. Kalman, R. S. Bucy, “New Results in Linear Filtering and Prediction Theory”, Journal of Basic Engineering, 83:1 (1961), 95–108 | DOI | MR

[18] I. Karatzas, K. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance and Stochastics, 11:4 (2007), 447–493 | DOI | MR

[19] I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, New York, Heidelberg, 1988 | MR

[20] J. L. Kelly, “A new interpretation of information rate”, Bell Sys. Tech. J., 35:4 (1956), 917–926 | DOI | MR

[21] H. Kushner, “Dynamical equations for optimal nonlinear filtering”, J. Differ. Equations, 3 (1967), 179–190 | DOI | MR

[22] O. Mostovyi, P. Siorpaes, “Differentiation of measures on a non-separable space, and the Radon-Nikodym theorem”, 2019, arXiv: 1909.03505 [math.CA]

[23] R. Liptser, A. N. Shiryaev, Statistics of Random Processes. I General Theory, Springer-Verlag, New York, 1977 | MR

[24] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999 | MR

[25] L. C. G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, Second edition, Cambridge University Press, Cambridge, 2000 | MR