General inference in semiparametric models through divergences and the duality technique with applications
Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 1-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend the dual divergence approach to general semiparametric models and study dual divergence estimators for semiparametric models. Asymptotic properties such as consistency, asymptotic normality of the proposed estimators are deeply investigated by mean the sophisticated modern empirical theory. We investigate the exchangeably weighted estimators in this setting and establish the consistency. We finally consider the functional $M$-estimator and obtain its weak convergence result.
Keywords: $M$-estimators, Robust estimation, Semiparametric, Minimum distance estimators, empirical processes.
Mots-clés : Divergences
@article{THSP_2020_25_1_a0,
     author = {Salim Bouzebda and Mohamed Cherfi},
     title = {General inference in semiparametric models through divergences and the duality technique with applications},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a0/}
}
TY  - JOUR
AU  - Salim Bouzebda
AU  - Mohamed Cherfi
TI  - General inference in semiparametric models through divergences and the duality technique with applications
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 1
EP  - 24
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a0/
LA  - en
ID  - THSP_2020_25_1_a0
ER  - 
%0 Journal Article
%A Salim Bouzebda
%A Mohamed Cherfi
%T General inference in semiparametric models through divergences and the duality technique with applications
%J Teoriâ slučajnyh processov
%D 2020
%P 1-24
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a0/
%G en
%F THSP_2020_25_1_a0
Salim Bouzebda; Mohamed Cherfi. General inference in semiparametric models through divergences and the duality technique with applications. Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a0/

[1] S. Alvarez-Andrade, S. Bouzebda, “Strong approximations for weighted bootstrap of empirical and quantile processes with applications”, Stat. Methodol., 11 (2013), 36–52 | DOI | MR

[2] S. Alvarez-Andrade, S. Bouzebda, “On the local time of the weighted bootstrap and compound empirical processes”, Stoch. Anal. Appl., 33:4 (2015), 609–629 | DOI | MR

[3] S. Alvarez-Andrade, S. Bouzebda, “Some selected topics for the bootstrap of the empirical and quantile processes”, Theory Stoch. Process., 24:1 (2019), 19–48 | MR

[4] P. Barbe, P. Bertail, The weighted bootstrap, Lecture Notes in Statistics, 98, Springer-Verlag, New York, 1995 | DOI | MR

[5] A. Basu, H. Shioya, C. Park, Statistical inference, The minimum distance approach, Monographs on Statistics and Applied Probability, 120, CRC Press, Boca Raton, FL, 2011 | MR

[6] P. J. Bickel, Y. Ritov, “Efficient estimation in the errors in variables model”, Ann. Statist., 15:2 (1987), 513–540 | DOI | MR

[7] P. J. Bickel, C. A. J. Klaassen, Y. Ritov, J. A. Wellner, Efficient and adaptive estimation for semiparametric models, Reprint of the 1993 original, Springer-Verlag, New York, 1998 | MR

[8] S. Bouzebda, “Bootstrap de l'estimateur de {H}ill: théorèmes limites”, Ann. I.S.U.P., 54:1-2 (2010), 61–72 | MR

[9] S. Bouzebda, “On the strong approximation of bootstrapped empirical copula processes with applications”, Math. Methods Statist., 21:3 (2012), 153–188 | DOI | MR

[10] S. Bouzebda, M. Cherfi, “General bootstrap for dual $\phi$-divergence estimates”, J. Probab. Stat., 2012 (2012), 33 pp. | DOI | MR

[11] S. Bouzebda, A. Keziou, “New estimates and tests of independence in semiparametric copula models”, Kybernetika (Prague), 46:1 (2010), 178–201 | MR

[12] S. Bouzebda, N. Limnios, “On general bootstrap of empirical estimator of a semi-Markov Kernel with applications”, J. Multivariate Anal., 116 (2013), 52–62 | DOI | MR

[13] S. Bouzebda, Ch. Papamichail, N. Limnios, “On a multidimensional general bootstrap for empirical estimator of continuous-time semi-{M}arkov kernels with applications”, J. Nonparametr. Stat., 30:1 (2018), 49–86 | DOI | MR

[14] M. Broniatowski, A. Keziou, “Minimization of {$\phi$}-divergences on sets of signed measures”, Studia Sci. Math. Hungar., 43:4 (2006), 403–442 | MR

[15] M. Broniatowski, A. Keziou, “Parametric estimation and tests through divergences and the duality technique”, J. Multivariate Anal., 100:1 (2009), 16–36 | DOI | MR

[16] F. Chebana, “Parametric estimation with a class of {$M$}-estimators”, Math. Methods Statist., 18:3 (2009), 231–240 | DOI | MR

[17] J. Chen, J. D. Kalbfleisch, “Penalized minimum-distance estimates in finite mixture models”, Canad. J. Statist., 24:2 (1996), 167–175 | DOI | MR

[18] J. H. Chen, “Optimal rate of convergence for finite mixture models”, Ann. Statist., 23:1 (1995), 221–233 | DOI | MR

[19] X. Chen, O. Linton, I. Van Keilegom, “Estimation of semiparametric models when the criterion function is not smooth”, Econometrica, 71:5 (2003), 1591–1608 | DOI | MR

[20] G. Cheng, “Moment Consistency of the Exchangeably Weighted Bootstrap for Semiparametric $M$-estimation”, Scand. J. Stat., 42:3 (2015), 665–684 | DOI | MR

[21] G. Cheng, J. Z. Huang, Bootstrap consistency for general semiparametric {$M$}-estimation, 38:5 (2010), 2884–2915 | MR

[22] M. Cherfi, “Dual $\phi$-divergences estimation in normal models”, 2011, arXiv: 1108.2999

[23] M. Cherfi, “Dual divergences estimation for censored survival data”, J. Statist. Plann. Inference, 142:7 (2012), 1746–1756 | DOI | MR

[24] N. Cressie, T. R. C. Read, “Multinomial goodness-of-fit tests”, J. Roy. Statist. Soc. Ser. B, 46:3 (1984), 440–464 | MR

[25] B. Efron, “Bootstrap methods: another look at the jackknife”, Ann. Statist., 7:1 (1979), 1–26 | DOI | MR

[26] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, Monographs on Statistics and Applied Probability, 57, Chapman and Hall, New York, 1993 | MR

[27] E. Giné, J. Zinn, “Bootstrapping general empirical measures”, Ann. Probab., 18:2 (1990), 851–869 | DOI | MR

[28] P. Hall, The bootstrap and {E}dgeworth expansion, Springer Series in Statistics, Springer-Verlag, New York, 1992 | DOI | MR

[29] P. Hall, “On the nonparametric estimation of mixture proportions”, J. Roy. Statist. Soc. Ser. B, 43:2 (1981), 147–156 | MR

[30] A. Keziou, S. Leoni-Aubin, “On empirical likelihood for semiparametric two-sample density ratio models”, J. Statist. Plann. Inference, 138:4 (2008), 915–928 | DOI | MR

[31] M. R. Kosorok, Introduction to empirical processes and semiparametric inference, Springer Series in Statistics, Springer, New York, 2008 | DOI | MR

[32] F. Liese, I. Vajda, Convex statistical distances, With German, French and Russian summaries., Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 95, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987 | MR

[33] F. Liese, I. Vajda, “On divergences and informations in statistics and information theory”, IEEE Trans. Inform. Theory, 52:10 (2006), 4394–4412 | DOI | MR

[34] A. Y. Lo, “A {B}ayesian method for weighted sampling”, Ann. Statist., 21:4 (1993), 2138–2148 | DOI | MR

[35] L. F. James, “A study of a class of weighted bootstraps for censored data”, Ann. Statist., 25:4 (1997), 1595–1621 | DOI | MR

[36] A. Janssen, “Resampling {S}tudent's {$t$}-type statistics”, Ann. Inst. Statist. Math., 57:3 (2005), 507–529 | DOI | MR

[37] A. Janssen, T. Pauls, “How do bootstrap and permutation tests work?”, Ann. Statist., 31:3 (2003), 768–806 | DOI | MR

[38] G. McLachlan, D. Peel, Finite mixture models, Wiley Series in Probability and Statistics: Applied Probability and Statistics, Wiley-Interscience, New York, 2000 | DOI | MR

[39] S. A. Murphy, A. W. Van Der Vaart, “Likelihood inference in the errors-in-variables model”, J. Multivariate Anal., 59:1 (1996), 81–108 | DOI | MR

[40] B. Nan, J. A. Wellner, “A general semiparametric Z-estimation approach for case-cohort studies”, Statistica Sinica, 23 (2013), 1155–1180 | MR

[41] W. K. Newey, D. McFadden, “Large sample estimation and hypothesis testing”, In Handbook of econometrics, Handbooks in Econom, IV, no. 2, North-Holland, Amsterdam, 1994, 2111–2245 | DOI | MR

[42] L. Pardo, Statistical inference based on divergence measures, Statistics: Textbooks and Monographs, 185, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR

[43] J. Præstgaard, J. A. Wellner, “Exchangeably weighted bootstraps of the general empirical process”, Ann. Probab., 21:4 (1993), 2053–2086 | DOI | MR

[44] D. M. Titterington, A. F. M. Smith, U. E. Makov, Statistical analysis of finite mixture distributions, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley Sons Ltd., Chichester, 1985 | MR

[45] A. Toma, M. Broniatowski, “Dual divergence estimators and tests: robustness results”, J. Multivariate Anal., 102:1 (2011), 20–36 | DOI | MR

[46] A. Toma, S. Leoni-Aubin, “Robust tests based on dual divergence estimators and saddlepoint approximations”, J. Multivariate Anal., 101:5 (2010), 1143–1155 | DOI | MR

[47] A. van der Vaart, “Efficient maximum likelihood estimation in semiparametric mixture models”, Ann. Statist., 24:2 (1996), 862–878 | DOI | MR

[48] A. van der Vaart, “Semiparametric statistics”, Lectures on probability theory and statistics ({S}aint-{F}lour, Lecture Notes in Math., 1781, Springer, Berlin, 1999, 331–457 | MR

[49] A. van der Vaart, J. A. Wellner, “Preservation theorems for {G}livenko-{C}antelli and uniform {G}livenko-{C}antelli classes”, Progr. Probab., High dimensional probability, {II} ({S}eattle, {WA}, 47, Birkhäuser, Boston, MA, 1999, 115–133 | MR

[50] A. W. van der Vaart, Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998 | MR

[51] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes, With applications to statistics, Springer Series in Statistics, Springer-Verlag, New York, 1996 | MR

[52] W. R. van Zwet, “The {E}dgeworth expansion for linear combinations of uniform order statistics”, In Proceedings of the {S}econd {P}rague {S}ymposium on {A}symptotic {S}tatistics ({H}radec {K}rálové, North-Holland, Amsterdam-New York, 1978, 93–101 | MR

[53] J. A. Wellner, Y. Zhan, Bootstrapping $z$-estimators, Technical Report 308, July, 1996

[54] C.-S. Weng, “On a second-order asymptotic property of the {B}ayesian bootstrap mean”, Ann. Statist., 17:2 (1989), 705–710 | DOI | MR

[55] J. Wu, R. J. Karunamuni, “Efficient Hellinger distance estimates for semiparametric models”, J. Multivariate Anal., 107 (2012), 1–23 | DOI | MR

[56] J. Wu, Minimum {H}ellinger distance estimation in semiparametric models, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of Alberta (Canada), 2008 | MR

[57] C.F.J. Wu, On the asymptotic property of the jackknife histogram, Technical report, Dept. of Statistics, Univ. of Wisconsin, Madison, 1987 | MR

[58] Y. Zhan, “Central limit theorems for functional {$Z$}-estimators”, Statist. Sinica, 12:2 (2002), 609–634 | MR

[59] Z. G. Zheng, D. S. Tu, “Random weighting methods in regression models”, Sci. Sinica Ser. A, 31:12 (1988), 1442–1459 | MR