Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_2_a6, author = {I. S. Stamatiou and N. Halidias}, title = {Convergence rates of the {Semi-Discrete} method for stochastic differential equations}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {89--100}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a6/} }
TY - JOUR AU - I. S. Stamatiou AU - N. Halidias TI - Convergence rates of the Semi-Discrete method for stochastic differential equations JO - Teoriâ slučajnyh processov PY - 2019 SP - 89 EP - 100 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a6/ LA - en ID - THSP_2019_24_2_a6 ER -
I. S. Stamatiou; N. Halidias. Convergence rates of the Semi-Discrete method for stochastic differential equations. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 89-100. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a6/
[1] S. Ermakov, A. Pogosian, “On solving stochastic differential equations”, Monte Carlo Methods and Applications, 25:2 (2019), 155–161 | DOI | MR | Zbl
[2] W. Fang, M. B. Giles, “Adaptive Euler–Maruyama Method for SDEs with Non-globally Lipschitz Drift”, Monte Carlo and Quasi-Monte Carlo Methods, eds. A. B. Owen, P.W. Glynn, Springer International Publishing, Cham, 217–234 | MR | Zbl
[3] N. Halidias, “Semi-discrete approximations for stochastic differential equations and applications”, International Journal of Computer Mathematics, 89:6 (2012), 780–794 | DOI | MR | Zbl
[4] N. Halidias, “A novel approach to construct numerical methods for stochastic differential equations”, Numerical Algorithms, 66:1 (2014), 79–87 | DOI | MR | Zbl
[5] N. Halidias, “Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations”, Discrete and Continuous Dynamical Systems - Series B, 20:1 (2015), 153–160 | DOI | MR | Zbl
[6] N. Halidias, “Constructing positivity preserving numerical schemes for the two-factor {CIR} model”, Monte Carlo Methods and Applications, 21:4 (2015), 313–323 | DOI | MR | Zbl
[7] N. Halidias, I. S. Stamatiou, “On the {N}umerical {S}olution of {S}ome {N}on-{L}inear {S}tochastic {D}ifferential {E}quations {U}sing the {S}emi-{D}iscrete {M}ethod”, Computational Methods in Applied Mathematics, 16:1 (2016), 105–132 | DOI | MR | Zbl
[8] N. Halidias, I. S. Stamatiou, “Approximating Explicitly the Mean-Reverting CEV Process”, Journal of Probability and Statistics, 2015, 513137, 20 pp. | DOI | MR
[9] L. Hu, X. Li, X. Mao, “Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations”, Journal of Computational and Applied Mathematics, 337 (2018), 274–289 | DOI | MR | Zbl
[10] M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential equations with non-globally {L}ipschitz continuous coefficients, Memoirs of the American Mathematical Society, 236, no. 1112, 2015 | DOI | MR
[11] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, “Strong and weak divergence in finite time of {E}uler's method for stochastic differential equations with non-globally {L}ipschitz continuous coefficients”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, ed. O. R. Auth, The Royal Society, 1563–1576 | MR | Zbl
[12] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Springer-Verlag, New York, 1988 | MR | Zbl
[13] C. Kelly, G. Lord, “Adaptive time-stepping strategies for nonlinear stochastic systems”, IMA Journal of Numerical Analysis, 2017 | MR
[14] C. Kelly, A. Rodkina, E. M. Rapoo, “Adaptive timestepping for pathwise stability and positivity of strongly discretised nonlinear stochastic differential equations”, Journal of Computational and Applied Mathematics, 334 (2018), 39–57 | DOI | MR | Zbl
[15] P. E. Kloeden, E. Platen, Numerical {S}olution of {S}tochastic {D}ifferential {E}quations, corrected 2nd printing, Springer-Verlag, Berlin, 1995 | MR
[16] X. Mao, Stochastic differential equations and applications, 2nd edition, Horwood Publishing, Chichester, 2007 | MR | Zbl
[17] X. Mao, “The truncated Euler-Maruyama method for stochastic differential equations”, Journal of Computational and Applied Mathematics, 290 (2015), 370–384 | MR | Zbl
[18] X. Mao, “Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations”, Journal of Computational and Applied Mathematics, 296 (2016), 362–375 | MR | Zbl
[19] A. Neuenkirch, L. Szpruch, “First order strong approximations of scalar {SDE}s defined in a domain”, Numerische Mathematik, 128:1 (2014), 103–136 | MR | Zbl
[20] S. Sabanis, “Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients”, Annals of Applied Probability, 26:4 (2016), 2083–2105 | DOI | MR | Zbl
[21] I. S. Stamatiou, “A boundary preserving numerical scheme for the {W}right-{F}isher model”, Journal of Computational and Applied Mathematics, 328 (2018), 132–150 | DOI | MR | Zbl
[22] I. S. Stamatiou, “An explicit positivity preserving numerical scheme for CIR/CEV type delay models with jump”, Journal of Computational and Applied Mathematics, 360 (2019), 78–98 | DOI | MR | Zbl
[23] M. V. Tretyakov, Z. Zhang, “A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications”, SIAM Journal on Numerical Analysis, 51:6 (2013), 3135–3162 | DOI | MR | Zbl
[24] W. Wagner, “Monte Carlo evaluation of functionals of solutions of stochastic differential equations. Variance reduction and numerical examples”, Stochastic Analysis and Applications, 6:4 (1988), 447–468 | DOI | MR | Zbl