The limit behaviour of random walks with arrests
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 79-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tilde S$ be a random walk which behaves like a standard centred and square-integrable random walk except when hitting $0$. Upon the $i$-th hit of $0$ the random walk is arrested there for a random amount of time $\eta_i \geq 0$; and then continues its way as usual. The random variables $\eta_1, \ \eta_2, \ \ldots$ are assumed i.i.d. We study the limit behaviour of this process scaled as in the Donsker theorem. In case of $\mathbb E \eta_i \infty$, weak convergence towards a Wiener process is proved. We also consider the sequence of processes whose arrest times are geometrically distributed and grow with $n$. We prove that the weak limit for the last model is either a Wiener process, a Wiener process stopped at 0 or a Wiener process with a sticky point.
Keywords: Functional limit theorem, sticky Brownian motion, perturbed random walks.
@article{THSP_2019_24_2_a5,
     author = {O. O. Prykhodko},
     title = {The limit behaviour of random walks with arrests},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a5/}
}
TY  - JOUR
AU  - O. O. Prykhodko
TI  - The limit behaviour of random walks with arrests
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 79
EP  - 88
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a5/
LA  - en
ID  - THSP_2019_24_2_a5
ER  - 
%0 Journal Article
%A O. O. Prykhodko
%T The limit behaviour of random walks with arrests
%J Teoriâ slučajnyh processov
%D 2019
%P 79-88
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a5/
%G en
%F THSP_2019_24_2_a5
O. O. Prykhodko. The limit behaviour of random walks with arrests. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 79-88. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a5/

[1] R. F. Bass, “A stochastic differential equation with a sticky point”, Electron. J. Probab., 19:32 (2014), 1–22 | MR

[2] P. Billingsley, Convergence of Probability Measures, Wiley, 1999 | MR | Zbl

[3] A. N. Borodin, “On the Asymptotic Behavior of Local Times of Recurrent Random Walks with Finite Variance”, Theory Probab. Appl., 26:4 (1982), 758–772 | MR | Zbl

[4] H. J. Engelbert, G. Peskir, “Stochastic Differential Equations for Sticky Brownian Motion”, Stochastics, 86:6 (2014), 993–1021 | DOI | MR | Zbl

[5] I. I. Gihman, A. V. Skorokhod, Stochastic differential equations, Naukova Dumka, Kyiv, 1968 | MR

[6] J. M. Harrison, A. J. Lemoine, “Sticky Brownian Motion as the Limit of Storage Processes”, Journal of Applied Probability, 18:2 (1981), 216–226 | MR | Zbl

[7] J. M. Harrison, L. A. Shepp, “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl

[8] A. M. Iksanov, A. Y. Pilipenko, “A functional limit theorem for locally perturbed random walks”, Probability and mathematical statistics, 36:2 (2016), 353–368 | MR | Zbl

[9] K. Itô, H. P. McKean Jr., Diffusion Processes and their Sample Paths, Springer, Berlin, Heidelberg, 1974 | MR | Zbl

[10] M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for continuous-time random walks with infinite mean waiting times”, J. Appl. Prob., 41 (2004), 623–638 | DOI | MR | Zbl

[11] E. W. Montroll, G. H. Weiss, “Random walks on lattices. II”, J. Math. Phys., 6 (1965), 167–181 | DOI | MR | Zbl

[12] A. Y. Pilipenko, Y. E. Prykhodko, “Limit behaviour of a simple random walk with non-integrable jump from a barrier”, Theory of Stochastic Processes, 19 (35):1 (2014), 52–61 | MR | Zbl

[13] S. I. Resnick, Heavy-Tail Phenomena, Probabilistic and Statistical Modeling, Springer, 2007 | MR | Zbl

[14] A. V. Skorokhod, Studies in the theory of random processes, Kyiv University, Kyiv, 1961 | MR

[15] F. Spitzer, Principles of Random Walk, Springer-Verlag, New York, 1964 | MR