Limit theorem for perturbed random walks
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 61-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider random walks perturbed at zero which behave like (possibly different) random walk with independent and identically distributed increments on each half lines and restarts at $0$ whenever they cross that point. We show that the perturbed random walk, after being rescaled in a proper way, converges to a skew Brownian motion whose parameter is defined by renewal functions of the simple random walk and the transition probabilities from $0$.
Keywords: Invariance principle, Reflected Brownian motion, Renewal function, Skew Brownian motion.
@article{THSP_2019_24_2_a4,
     author = {Hoang-Long Ngo and Marc Peign\'e},
     title = {Limit theorem for perturbed random walks},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {61--78},
     year = {2019},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/}
}
TY  - JOUR
AU  - Hoang-Long Ngo
AU  - Marc Peigné
TI  - Limit theorem for perturbed random walks
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 61
EP  - 78
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/
LA  - en
ID  - THSP_2019_24_2_a4
ER  - 
%0 Journal Article
%A Hoang-Long Ngo
%A Marc Peigné
%T Limit theorem for perturbed random walks
%J Teoriâ slučajnyh processov
%D 2019
%P 61-78
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/
%G en
%F THSP_2019_24_2_a4
Hoang-Long Ngo; Marc Peigné. Limit theorem for perturbed random walks. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 61-78. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/

[1] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, Journal of Theoretical Probability, 25:3 (2012), 703–732 | DOI | MR | Zbl

[2] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, The Annals of probability, 33:2 (2005), 645–673 | DOI | MR | Zbl

[3] K. S. Alexander, Q. Berger, “Local limit theorems and renewal theory with no moments”, Electronic Journal of Probability, 21:66 (2016), 1–18 | MR

[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[5] E. Bolthausen, “On a Functional Central Limit Theorem for Random Walk Conditioned to Stay Positive”, Annals of Probability, 4:3 (1976), 480–485 | MR | Zbl

[6] F. Caravenna, L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18:60 (2013), 1–32 | MR

[7] P. Diaconis, D. Freedman, “Iterated Random Functions”, SIAM review, 41:1 (1999), 45–76 | DOI | MR | Zbl

[8] R. A. Doney, “One-sided local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory and Related Fields, 107:4 (1997), 451–465 | DOI | MR | Zbl

[9] R. A. Doney, “Local behaviour of first passage probabilities”, Probability Theory and Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl

[10] J. M. Harrison, L. A. Shepp, “On Skew Brownian Motion”, The Annals of Probability, 9:2 (1981), 608–619 | MR

[11] D. L. Iglehart, “Functional central limit theorems for random walk conditioned to stay positive”, The Annals of Probability, 2:4 (1974), 608–619 | DOI | MR | Zbl

[12] A. Iksanov, A. Pilipenko, “A functional limit theorem for locally perturbed random walk”, Probability and Mathematical Statistics, 36:2 (2016), 353–368 | MR | Zbl

[13] K. Itô, H. P. Jr. McKean, Diffusion processes and their sample paths, Springer Science Business Media, 2012 | MR

[14] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1976), 791–804 | DOI | MR | Zbl

[15] A. Lejay, “On the constructions of the skew Brownian motion”, Probab. Surveys, 3 (2006), 413–466 | DOI | MR | Zbl

[16] E. Le Page, E., M. Peigné, “A local limit theorem on the semi-direct product of $\mathbb R^{*+} $ and $\mathbb R^d$”, Annales de l'I.H.P. Probab. et Stat., 33:2 (1997), 223–252 | MR | Zbl

[17] R. A. Minlos, E. A. Zhizhina, “A limit diffusion process for an inhomogeneous r.w. on a one-dimensional lattice”, Russian Math. Surveys, 52:2 (1997), 327–340 | DOI | MR | Zbl

[18] M. Peigné, W. Woess, “Stochastic dynamical systems with weak contractivity I. Strong and local contractivity”, Colloquium Mathematicum, 125 (2011), 1–54 | DOI | MR | Zbl

[19] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of the symmetric random walk with a membrane”, Theor. Probability and Math. Statist., 85 (2012), 93–105 | DOI | MR | Zbl

[20] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of a simple random walk with non integrable jumps from a barrier”, Theory of Stochastic Processes, 19 (35):1 (2014), 52–61 | MR | Zbl

[21] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Third Edition, Springer, 2005 | MR | Zbl

[22] D. Szász, A. Telcs, “Random walk in an inhomogeneous medium with local impurities”, J. Statist. Phys., 26:3 (1981), 527–537 | DOI | MR | Zbl