Limit theorem for perturbed random walks
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 61-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random walks perturbed at zero which behave like (possibly different) random walk with independent and identically distributed increments on each half lines and restarts at $0$ whenever they cross that point. We show that the perturbed random walk, after being rescaled in a proper way, converges to a skew Brownian motion whose parameter is defined by renewal functions of the simple random walk and the transition probabilities from $0$.
Keywords: Invariance principle, Reflected Brownian motion, Renewal function, Skew Brownian motion.
@article{THSP_2019_24_2_a4,
     author = {Hoang-Long Ngo and Marc Peign\'e},
     title = {Limit theorem for perturbed random walks},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {61--78},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/}
}
TY  - JOUR
AU  - Hoang-Long Ngo
AU  - Marc Peigné
TI  - Limit theorem for perturbed random walks
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 61
EP  - 78
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/
LA  - en
ID  - THSP_2019_24_2_a4
ER  - 
%0 Journal Article
%A Hoang-Long Ngo
%A Marc Peigné
%T Limit theorem for perturbed random walks
%J Teoriâ slučajnyh processov
%D 2019
%P 61-78
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/
%G en
%F THSP_2019_24_2_a4
Hoang-Long Ngo; Marc Peigné. Limit theorem for perturbed random walks. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 61-78. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/

[1] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, Journal of Theoretical Probability, 25:3 (2012), 703–732 | DOI | MR | Zbl

[2] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, The Annals of probability, 33:2 (2005), 645–673 | DOI | MR | Zbl

[3] K. S. Alexander, Q. Berger, “Local limit theorems and renewal theory with no moments”, Electronic Journal of Probability, 21:66 (2016), 1–18 | MR

[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[5] E. Bolthausen, “On a Functional Central Limit Theorem for Random Walk Conditioned to Stay Positive”, Annals of Probability, 4:3 (1976), 480–485 | MR | Zbl

[6] F. Caravenna, L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18:60 (2013), 1–32 | MR

[7] P. Diaconis, D. Freedman, “Iterated Random Functions”, SIAM review, 41:1 (1999), 45–76 | DOI | MR | Zbl

[8] R. A. Doney, “One-sided local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory and Related Fields, 107:4 (1997), 451–465 | DOI | MR | Zbl

[9] R. A. Doney, “Local behaviour of first passage probabilities”, Probability Theory and Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl

[10] J. M. Harrison, L. A. Shepp, “On Skew Brownian Motion”, The Annals of Probability, 9:2 (1981), 608–619 | MR

[11] D. L. Iglehart, “Functional central limit theorems for random walk conditioned to stay positive”, The Annals of Probability, 2:4 (1974), 608–619 | DOI | MR | Zbl

[12] A. Iksanov, A. Pilipenko, “A functional limit theorem for locally perturbed random walk”, Probability and Mathematical Statistics, 36:2 (2016), 353–368 | MR | Zbl

[13] K. Itô, H. P. Jr. McKean, Diffusion processes and their sample paths, Springer Science Business Media, 2012 | MR

[14] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1976), 791–804 | DOI | MR | Zbl

[15] A. Lejay, “On the constructions of the skew Brownian motion”, Probab. Surveys, 3 (2006), 413–466 | DOI | MR | Zbl

[16] E. Le Page, E., M. Peigné, “A local limit theorem on the semi-direct product of $\mathbb R^{*+} $ and $\mathbb R^d$”, Annales de l'I.H.P. Probab. et Stat., 33:2 (1997), 223–252 | MR | Zbl

[17] R. A. Minlos, E. A. Zhizhina, “A limit diffusion process for an inhomogeneous r.w. on a one-dimensional lattice”, Russian Math. Surveys, 52:2 (1997), 327–340 | DOI | MR | Zbl

[18] M. Peigné, W. Woess, “Stochastic dynamical systems with weak contractivity I. Strong and local contractivity”, Colloquium Mathematicum, 125 (2011), 1–54 | DOI | MR | Zbl

[19] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of the symmetric random walk with a membrane”, Theor. Probability and Math. Statist., 85 (2012), 93–105 | DOI | MR | Zbl

[20] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of a simple random walk with non integrable jumps from a barrier”, Theory of Stochastic Processes, 19 (35):1 (2014), 52–61 | MR | Zbl

[21] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Third Edition, Springer, 2005 | MR | Zbl

[22] D. Szász, A. Telcs, “Random walk in an inhomogeneous medium with local impurities”, J. Statist. Phys., 26:3 (1981), 527–537 | DOI | MR | Zbl