Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_2_a4, author = {Hoang-Long Ngo and Marc Peign\'e}, title = {Limit theorem for perturbed random walks}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {61--78}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/} }
Hoang-Long Ngo; Marc Peigné. Limit theorem for perturbed random walks. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 61-78. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a4/
[1] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, Journal of Theoretical Probability, 25:3 (2012), 703–732 | DOI | MR | Zbl
[2] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, The Annals of probability, 33:2 (2005), 645–673 | DOI | MR | Zbl
[3] K. S. Alexander, Q. Berger, “Local limit theorems and renewal theory with no moments”, Electronic Journal of Probability, 21:66 (2016), 1–18 | MR
[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[5] E. Bolthausen, “On a Functional Central Limit Theorem for Random Walk Conditioned to Stay Positive”, Annals of Probability, 4:3 (1976), 480–485 | MR | Zbl
[6] F. Caravenna, L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18:60 (2013), 1–32 | MR
[7] P. Diaconis, D. Freedman, “Iterated Random Functions”, SIAM review, 41:1 (1999), 45–76 | DOI | MR | Zbl
[8] R. A. Doney, “One-sided local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory and Related Fields, 107:4 (1997), 451–465 | DOI | MR | Zbl
[9] R. A. Doney, “Local behaviour of first passage probabilities”, Probability Theory and Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl
[10] J. M. Harrison, L. A. Shepp, “On Skew Brownian Motion”, The Annals of Probability, 9:2 (1981), 608–619 | MR
[11] D. L. Iglehart, “Functional central limit theorems for random walk conditioned to stay positive”, The Annals of Probability, 2:4 (1974), 608–619 | DOI | MR | Zbl
[12] A. Iksanov, A. Pilipenko, “A functional limit theorem for locally perturbed random walk”, Probability and Mathematical Statistics, 36:2 (2016), 353–368 | MR | Zbl
[13] K. Itô, H. P. Jr. McKean, Diffusion processes and their sample paths, Springer Science Business Media, 2012 | MR
[14] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1976), 791–804 | DOI | MR | Zbl
[15] A. Lejay, “On the constructions of the skew Brownian motion”, Probab. Surveys, 3 (2006), 413–466 | DOI | MR | Zbl
[16] E. Le Page, E., M. Peigné, “A local limit theorem on the semi-direct product of $\mathbb R^{*+} $ and $\mathbb R^d$”, Annales de l'I.H.P. Probab. et Stat., 33:2 (1997), 223–252 | MR | Zbl
[17] R. A. Minlos, E. A. Zhizhina, “A limit diffusion process for an inhomogeneous r.w. on a one-dimensional lattice”, Russian Math. Surveys, 52:2 (1997), 327–340 | DOI | MR | Zbl
[18] M. Peigné, W. Woess, “Stochastic dynamical systems with weak contractivity I. Strong and local contractivity”, Colloquium Mathematicum, 125 (2011), 1–54 | DOI | MR | Zbl
[19] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of the symmetric random walk with a membrane”, Theor. Probability and Math. Statist., 85 (2012), 93–105 | DOI | MR | Zbl
[20] A. Yu. Pilipenko, Y. E. Pryhod'ko, “Limit behavior of a simple random walk with non integrable jumps from a barrier”, Theory of Stochastic Processes, 19 (35):1 (2014), 52–61 | MR | Zbl
[21] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Third Edition, Springer, 2005 | MR | Zbl
[22] D. Szász, A. Telcs, “Random walk in an inhomogeneous medium with local impurities”, J. Statist. Phys., 26:3 (1981), 527–537 | DOI | MR | Zbl