First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.
Keywords: Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence
Mots-clés : Euler scheme.
@article{THSP_2019_24_2_a3,
     author = {Tetyana Kosenkova and Alexei Kulik and Ilya Pavlyukevich},
     title = {First order convergence of weak {Wong--Zakai} approximations of {L\'evy-driven} {Marcus} {SDEs}},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {32--60},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/}
}
TY  - JOUR
AU  - Tetyana Kosenkova
AU  - Alexei Kulik
AU  - Ilya Pavlyukevich
TI  - First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 32
EP  - 60
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/
LA  - en
ID  - THSP_2019_24_2_a3
ER  - 
%0 Journal Article
%A Tetyana Kosenkova
%A Alexei Kulik
%A Ilya Pavlyukevich
%T First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
%J Teoriâ slučajnyh processov
%D 2019
%P 32-60
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/
%G en
%F THSP_2019_24_2_a3
Tetyana Kosenkova; Alexei Kulik; Ilya Pavlyukevich. First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/

[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 116, second ed., Cambridge University Press, Cambridge, 2009 | MR

[2] V. Bally, D. Talay, “The law of the {E}uler scheme for stochastic differential equations”, Probability Theory and Related Fields, 104:1 (1996), 43–60 | DOI | MR | Zbl

[3] A. V. Chechkin, I. Pavlyukevich, “Marcus versus Stratonovich for systems with jump noise”, Journal of Physics A: Mathematical and Theoretical, 47 (2014), 342001 | DOI | MR

[4] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl

[5] M. {Di Paola}, G. Falsone, “Itô and Stratonovich integrals for delta-correlated processes”, Probabilistic Engineering Mechanics, 8:3 (1993), 197–208

[6] T. Fujiwara, “Stochastic differential equations of jump type on manifolds and {Lé}vy flows”, Journal of Mathematics of Kyoto University, 31 (1991), 99–119 | DOI | MR | Zbl

[7] T. Fujiwara, H. Kunita, “Canonical SDE's based on semimartingales with spacial parameter. Part I: Stochastic flows of diffeomorphisms”, Kyushu Journal of Mathematics, 53:2 (1999), 265–300 | DOI | MR | Zbl

[8] P. Hartman, Ordinary differential equations, John Wiley Sons, New York, 1964 | MR | Zbl

[9] J. Jacod, T. G. Kurtz, S. Méléard, P. Protter, “The approximate {E}uler method for {Lé}vy driven stochastic differential equations”, Annales de l'Institut Henri Poincaré, section B, 41 (2005), 523–558 | DOI | MR | Zbl

[10] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1995 | MR

[11] A. Kohatsu-Higa, H.-L. Ngo, “Weak approximations for {SDE}'s driven by {Lé}vy processes”, Seminar on Stochastic Analysis, Random Fields and Applications, VII, Springer, 2013, 131–169 | MR

[12] A. Kohatsu-Higa, S. Ortiz-Latorre, P. Tankov, “Optimal simulation schemes for {Lé}vy driven stochastic differential equations”, Mathematics of Computation, 83:289 (2014), 2293–2324 | DOI | MR | Zbl

[13] A. Kohatsu-Higa, P. Tankov, “Jump-adapted discretization schemes for {Lé}vy-driven {SDE}s”, Stochastic Processes and Their Applications, 120:11 (2010), 2258–2285 | DOI | MR | Zbl

[14] K. Kubilius, E. Platen, “Rate of weak convergence of the {E}uler approximation for diffusion processes with jumps”, Monte Carlo Methods and Applications, 8:1 (2002), 83–96 | DOI | MR | Zbl

[15] H. Kunita, “Some problems concerning {Lé}vy processes on {Lie} groups”, Stochastic Analysis, Proceedings of Symposia in Pure {M}athamatics, 57, eds. M. C. Cranston and M. A. Pinsky, eds., AMS, Providence, RI, 1995, 323–341 | DOI | MR

[16] H. Kunita, “Stochastic differential equations based on {Lé}vy processes and stochastic flows of diffeomorphisms”, Real and Stochastic Analysis. New Perspectives, Trends in Mathematics, ed. M. M. Rao, ed., Birkhäuser, Boston, 2004, 305–373 | MR | Zbl

[17] T. G. Kurtz, É. Pardoux, P. Protter, “Stratonovich stochastic differential equations driven by general semimartingales”, Annales de l'Institut Henri Poincaré, section B, 31:2 (1995), 351–357 | MR

[18] T. Li, B. Min, Z. Wang, “Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm”, Journal of Chemical Physics, 138 (2013)

[19] T. Li, B. Min, Z. Wang, “Erratum: Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm”, J. Chem. Phys., 138:104118 (2013); The Journal of Chemical, 140:9 (2014), 099902

[20] X. Q. Liu, C. W. Li, “Weak approximations and extrapolations of stochastic differential equations with jumps”, SIAM Journal on Numerical Analysis, 37:6 (2000), 1747–1767 | DOI | MR | Zbl

[21] V. Mackevičius, “Second-order weak approximations for {S}tratonovich stochastic differential equations”, Lithuanian Mathematical Journal, 34:2 (1994), 183–200 | DOI | MR | Zbl

[22] S. I. Marcus, “Modeling and analysis of stochastic differential equations driven by point processes”, IEEE Transactions on Information Theory, 24:2 (1978), 164–172 | DOI | MR | Zbl

[23] S. I. Marcus, “Modeling and approximation of stochastic differential equations driven by semimartingales”, Stochastics, 4:3 (1981), 223–245 | DOI | MR | Zbl

[24] G. Maruyama, “Continuous {M}arkov processes and stochastic equations”, Rendiconti del Circolo Matematico di Palermo, 4:1 (1955), 48–90 | DOI | MR | Zbl

[25] R. Mikulevicius, “On the rate of convergence of simple and jump-adapted weak {E}uler schemes for {L}évy driven {SDE}s”, Stochastic Processes and their Applications, 122:7 (2012), 2730–2757 | DOI | MR | Zbl

[26] R. Mikulevičius, E. Platen, “Time discrete {T}aylor approximations for {I}tô processes with jump component”, Mathematische Nachrichten, 138:1 (1988), 93–104 | DOI | MR | Zbl

[27] R. Mikulevičius, C. Zhang, “On the rate of convergence of weak {E}uler approximation for nondegenerate {SDE}s driven by {Lé}vy processes”, Stochastic Processes and Their Applications, 121:8 (2011), 1720–1748 | DOI | MR | Zbl

[28] R. Mikulevičius, C. Zhang, “Weak Euler approximation for Itô diffusion and jump processes”, Stochastic Analysis and Applications, 33:3 (2015), 549–571 | MR | Zbl

[29] G. N. Milshtein, “A method of second-order accuracy integration of stochastic differential equations”, Theory of Probability Its Applications, 23:2 (1979), 396–401 | DOI | MR

[30] G. N. Milstein, Numerical integration of stochastic differential equations, Mathematics and Its Applications, 313, Kluwer Academic Publishers, Dordrecht, 1995 | MR

[31] G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, Springer, Berlin, 2013 | MR

[32] G. N. Milshtein, “Weak approximation of solutions of systems of stochastic differential equations”, Theory of Probability Its Applications, 30:4 (1986), 750–766 | DOI | MR

[33] I. Pavlyukevich, Y. Li, Y. Xu, A. Chechkin, “Directed transport induced by spatially modulated {L}évy flights”, Journal of Physics A: Mathematical and Theoretical, 48:49 (2015), 495004 | DOI | MR | Zbl

[34] P. Protter, D. Talay, “The {E}uler scheme for {Lé}vy driven stochastic differential equations”, The Annals of Probability, 25:1 (1997), 393–423 | DOI | MR | Zbl

[35] P. E. Protter, Stochastic integration and differential equations, Applications of Mathematics, 21, second ed., Springer, Berlin, 2004 | MR | Zbl

[36] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999 | MR

[37] X. Sun, J. Duan, X. Li, “An alternative expression for stochastic dynamical systems with parametric Poisson white noise”, Probabilistic Engineering Mechanics, 32 (2013), 1–4 | DOI

[38] D. Talay, “Efficient numerical schemes for the approximation of expectations of functionals of the solution of a {S.D.E.}, and applications”, Filtering and Control of Random Processes, Lecture Notes in Control and Information Sciences, 61, Springer–Verlag, Berlin, 1984, 294–313 | DOI | MR

[39] D. Talay, L. Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stochastic Analysis and Applications, 8:4 (1990), 483–509 | DOI | MR | Zbl

[40] P. Tankov, “High order weak approximation schemes for {Lé}vy-driven {SDE}s”, Monte Carlo and Quasi-Monte Carlo Methods (2010), Springer, 2012, 667–683 | MR

[41] E. Wong, M. Zakai, “On the convergence of ordinary integrals to stochastic integrals”, The Annals of Mathematical Statistics, 36:5 (1965), 1560–1564 | MR | Zbl

[42] E. Wong, M. Zakai, “On the relation between ordinary and stochastic differential equations”, International Journal of Engineering Science, 3:2 (1965), 213–229 | DOI | MR | Zbl