First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60
Voir la notice de l'article provenant de la source Math-Net.Ru
For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.
Keywords:
Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence
Mots-clés : Euler scheme.
Mots-clés : Euler scheme.
@article{THSP_2019_24_2_a3,
author = {Tetyana Kosenkova and Alexei Kulik and Ilya Pavlyukevich},
title = {First order convergence of weak {Wong--Zakai} approximations of {L\'evy-driven} {Marcus} {SDEs}},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {32--60},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/}
}
TY - JOUR AU - Tetyana Kosenkova AU - Alexei Kulik AU - Ilya Pavlyukevich TI - First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs JO - Teoriâ slučajnyh processov PY - 2019 SP - 32 EP - 60 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/ LA - en ID - THSP_2019_24_2_a3 ER -
%0 Journal Article %A Tetyana Kosenkova %A Alexei Kulik %A Ilya Pavlyukevich %T First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs %J Teoriâ slučajnyh processov %D 2019 %P 32-60 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/ %G en %F THSP_2019_24_2_a3
Tetyana Kosenkova; Alexei Kulik; Ilya Pavlyukevich. First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/