First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60

Voir la notice de l'article provenant de la source Math-Net.Ru

For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.
Keywords: Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence
Mots-clés : Euler scheme.
@article{THSP_2019_24_2_a3,
     author = {Tetyana Kosenkova and Alexei Kulik and Ilya Pavlyukevich},
     title = {First order convergence of weak {Wong--Zakai} approximations of {L\'evy-driven} {Marcus} {SDEs}},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {32--60},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/}
}
TY  - JOUR
AU  - Tetyana Kosenkova
AU  - Alexei Kulik
AU  - Ilya Pavlyukevich
TI  - First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 32
EP  - 60
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/
LA  - en
ID  - THSP_2019_24_2_a3
ER  - 
%0 Journal Article
%A Tetyana Kosenkova
%A Alexei Kulik
%A Ilya Pavlyukevich
%T First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
%J Teoriâ slučajnyh processov
%D 2019
%P 32-60
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/
%G en
%F THSP_2019_24_2_a3
Tetyana Kosenkova; Alexei Kulik; Ilya Pavlyukevich. First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/