Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_2_a3, author = {Tetyana Kosenkova and Alexei Kulik and Ilya Pavlyukevich}, title = {First order convergence of weak {Wong--Zakai} approximations of {L\'evy-driven} {Marcus} {SDEs}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {32--60}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/} }
TY - JOUR AU - Tetyana Kosenkova AU - Alexei Kulik AU - Ilya Pavlyukevich TI - First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs JO - Teoriâ slučajnyh processov PY - 2019 SP - 32 EP - 60 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/ LA - en ID - THSP_2019_24_2_a3 ER -
%0 Journal Article %A Tetyana Kosenkova %A Alexei Kulik %A Ilya Pavlyukevich %T First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs %J Teoriâ slučajnyh processov %D 2019 %P 32-60 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/ %G en %F THSP_2019_24_2_a3
Tetyana Kosenkova; Alexei Kulik; Ilya Pavlyukevich. First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 32-60. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a3/
[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 116, second ed., Cambridge University Press, Cambridge, 2009 | MR
[2] V. Bally, D. Talay, “The law of the {E}uler scheme for stochastic differential equations”, Probability Theory and Related Fields, 104:1 (1996), 43–60 | DOI | MR | Zbl
[3] A. V. Chechkin, I. Pavlyukevich, “Marcus versus Stratonovich for systems with jump noise”, Journal of Physics A: Mathematical and Theoretical, 47 (2014), 342001 | DOI | MR
[4] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[5] M. {Di Paola}, G. Falsone, “Itô and Stratonovich integrals for delta-correlated processes”, Probabilistic Engineering Mechanics, 8:3 (1993), 197–208
[6] T. Fujiwara, “Stochastic differential equations of jump type on manifolds and {Lé}vy flows”, Journal of Mathematics of Kyoto University, 31 (1991), 99–119 | DOI | MR | Zbl
[7] T. Fujiwara, H. Kunita, “Canonical SDE's based on semimartingales with spacial parameter. Part I: Stochastic flows of diffeomorphisms”, Kyushu Journal of Mathematics, 53:2 (1999), 265–300 | DOI | MR | Zbl
[8] P. Hartman, Ordinary differential equations, John Wiley Sons, New York, 1964 | MR | Zbl
[9] J. Jacod, T. G. Kurtz, S. Méléard, P. Protter, “The approximate {E}uler method for {Lé}vy driven stochastic differential equations”, Annales de l'Institut Henri Poincaré, section B, 41 (2005), 523–558 | DOI | MR | Zbl
[10] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1995 | MR
[11] A. Kohatsu-Higa, H.-L. Ngo, “Weak approximations for {SDE}'s driven by {Lé}vy processes”, Seminar on Stochastic Analysis, Random Fields and Applications, VII, Springer, 2013, 131–169 | MR
[12] A. Kohatsu-Higa, S. Ortiz-Latorre, P. Tankov, “Optimal simulation schemes for {Lé}vy driven stochastic differential equations”, Mathematics of Computation, 83:289 (2014), 2293–2324 | DOI | MR | Zbl
[13] A. Kohatsu-Higa, P. Tankov, “Jump-adapted discretization schemes for {Lé}vy-driven {SDE}s”, Stochastic Processes and Their Applications, 120:11 (2010), 2258–2285 | DOI | MR | Zbl
[14] K. Kubilius, E. Platen, “Rate of weak convergence of the {E}uler approximation for diffusion processes with jumps”, Monte Carlo Methods and Applications, 8:1 (2002), 83–96 | DOI | MR | Zbl
[15] H. Kunita, “Some problems concerning {Lé}vy processes on {Lie} groups”, Stochastic Analysis, Proceedings of Symposia in Pure {M}athamatics, 57, eds. M. C. Cranston and M. A. Pinsky, eds., AMS, Providence, RI, 1995, 323–341 | DOI | MR
[16] H. Kunita, “Stochastic differential equations based on {Lé}vy processes and stochastic flows of diffeomorphisms”, Real and Stochastic Analysis. New Perspectives, Trends in Mathematics, ed. M. M. Rao, ed., Birkhäuser, Boston, 2004, 305–373 | MR | Zbl
[17] T. G. Kurtz, É. Pardoux, P. Protter, “Stratonovich stochastic differential equations driven by general semimartingales”, Annales de l'Institut Henri Poincaré, section B, 31:2 (1995), 351–357 | MR
[18] T. Li, B. Min, Z. Wang, “Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm”, Journal of Chemical Physics, 138 (2013)
[19] T. Li, B. Min, Z. Wang, “Erratum: Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm”, J. Chem. Phys., 138:104118 (2013); The Journal of Chemical, 140:9 (2014), 099902
[20] X. Q. Liu, C. W. Li, “Weak approximations and extrapolations of stochastic differential equations with jumps”, SIAM Journal on Numerical Analysis, 37:6 (2000), 1747–1767 | DOI | MR | Zbl
[21] V. Mackevičius, “Second-order weak approximations for {S}tratonovich stochastic differential equations”, Lithuanian Mathematical Journal, 34:2 (1994), 183–200 | DOI | MR | Zbl
[22] S. I. Marcus, “Modeling and analysis of stochastic differential equations driven by point processes”, IEEE Transactions on Information Theory, 24:2 (1978), 164–172 | DOI | MR | Zbl
[23] S. I. Marcus, “Modeling and approximation of stochastic differential equations driven by semimartingales”, Stochastics, 4:3 (1981), 223–245 | DOI | MR | Zbl
[24] G. Maruyama, “Continuous {M}arkov processes and stochastic equations”, Rendiconti del Circolo Matematico di Palermo, 4:1 (1955), 48–90 | DOI | MR | Zbl
[25] R. Mikulevicius, “On the rate of convergence of simple and jump-adapted weak {E}uler schemes for {L}évy driven {SDE}s”, Stochastic Processes and their Applications, 122:7 (2012), 2730–2757 | DOI | MR | Zbl
[26] R. Mikulevičius, E. Platen, “Time discrete {T}aylor approximations for {I}tô processes with jump component”, Mathematische Nachrichten, 138:1 (1988), 93–104 | DOI | MR | Zbl
[27] R. Mikulevičius, C. Zhang, “On the rate of convergence of weak {E}uler approximation for nondegenerate {SDE}s driven by {Lé}vy processes”, Stochastic Processes and Their Applications, 121:8 (2011), 1720–1748 | DOI | MR | Zbl
[28] R. Mikulevičius, C. Zhang, “Weak Euler approximation for Itô diffusion and jump processes”, Stochastic Analysis and Applications, 33:3 (2015), 549–571 | MR | Zbl
[29] G. N. Milshtein, “A method of second-order accuracy integration of stochastic differential equations”, Theory of Probability Its Applications, 23:2 (1979), 396–401 | DOI | MR
[30] G. N. Milstein, Numerical integration of stochastic differential equations, Mathematics and Its Applications, 313, Kluwer Academic Publishers, Dordrecht, 1995 | MR
[31] G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, Springer, Berlin, 2013 | MR
[32] G. N. Milshtein, “Weak approximation of solutions of systems of stochastic differential equations”, Theory of Probability Its Applications, 30:4 (1986), 750–766 | DOI | MR
[33] I. Pavlyukevich, Y. Li, Y. Xu, A. Chechkin, “Directed transport induced by spatially modulated {L}évy flights”, Journal of Physics A: Mathematical and Theoretical, 48:49 (2015), 495004 | DOI | MR | Zbl
[34] P. Protter, D. Talay, “The {E}uler scheme for {Lé}vy driven stochastic differential equations”, The Annals of Probability, 25:1 (1997), 393–423 | DOI | MR | Zbl
[35] P. E. Protter, Stochastic integration and differential equations, Applications of Mathematics, 21, second ed., Springer, Berlin, 2004 | MR | Zbl
[36] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999 | MR
[37] X. Sun, J. Duan, X. Li, “An alternative expression for stochastic dynamical systems with parametric Poisson white noise”, Probabilistic Engineering Mechanics, 32 (2013), 1–4 | DOI
[38] D. Talay, “Efficient numerical schemes for the approximation of expectations of functionals of the solution of a {S.D.E.}, and applications”, Filtering and Control of Random Processes, Lecture Notes in Control and Information Sciences, 61, Springer–Verlag, Berlin, 1984, 294–313 | DOI | MR
[39] D. Talay, L. Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stochastic Analysis and Applications, 8:4 (1990), 483–509 | DOI | MR | Zbl
[40] P. Tankov, “High order weak approximation schemes for {Lé}vy-driven {SDE}s”, Monte Carlo and Quasi-Monte Carlo Methods (2010), Springer, 2012, 667–683 | MR
[41] E. Wong, M. Zakai, “On the convergence of ordinary integrals to stochastic integrals”, The Annals of Mathematical Statistics, 36:5 (1965), 1560–1564 | MR | Zbl
[42] E. Wong, M. Zakai, “On the relation between ordinary and stochastic differential equations”, International Journal of Engineering Science, 3:2 (1965), 213–229 | DOI | MR | Zbl