The nonlocal conjugation problem for one-dimensional parabolic equation with discontinuous coefficients and associated Feller semigroup
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the boundary integral equations method we establish the classical solvability of the conjugation problem for one-dimensional linear parabolic equation of the second order (backward Kolmogorov equation) with nonlocal Feller-Wentzell conjugation condition. Using the solution of this problem, we construct the two-parameter Feller semigroup associated with the inhomogeneous diffusion process in bounded domain with moving membrane.
Keywords: Feller semigroup, parabolic potential, method of successive approximations.
@article{THSP_2019_24_2_a2,
     author = {B. I. Kopytko and R. V. Shevchuk},
     title = {The nonlocal conjugation problem for one-dimensional parabolic equation with discontinuous coefficients and associated {Feller} semigroup},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a2/}
}
TY  - JOUR
AU  - B. I. Kopytko
AU  - R. V. Shevchuk
TI  - The nonlocal conjugation problem for one-dimensional parabolic equation with discontinuous coefficients and associated Feller semigroup
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 17
EP  - 31
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a2/
LA  - en
ID  - THSP_2019_24_2_a2
ER  - 
%0 Journal Article
%A B. I. Kopytko
%A R. V. Shevchuk
%T The nonlocal conjugation problem for one-dimensional parabolic equation with discontinuous coefficients and associated Feller semigroup
%J Teoriâ slučajnyh processov
%D 2019
%P 17-31
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a2/
%G en
%F THSP_2019_24_2_a2
B. I. Kopytko; R. V. Shevchuk. The nonlocal conjugation problem for one-dimensional parabolic equation with discontinuous coefficients and associated Feller semigroup. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 17-31. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a2/

[1] W. Feller, “The parabolic differential equations and associated semi-groups of transformations”, Ann. of Math. Soc., 55 (1952), 468–519 | DOI | MR | Zbl

[2] A. D. Wentzell, “Semigroups of operators that correspond to a generalized differential operator of second order”, Dokl. AN SSSR, 111:2 (1956), 269–272 | MR | Zbl

[3] A. V. Skorokhod, “Stochastic equations for diffusion processes with a boundary”, Teor. Verojatnost. i Primenen., 6 (1961), 287–298 | MR | Zbl

[4] S. Watanabe, N. Ikeda, Stochastic differential equations and diffusion processes, Nauka, Moscow, 1986 | MR | Zbl

[5] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin, New York, 1979 | MR | Zbl

[6] K. Itô, H. P. McKean, “Brownian motions on a half line”, Illinois J. Math., 7 (1963), 181–231 | DOI | MR | Zbl

[7] A. L. Skubachevskii, “On Feller semigroups for multidimensional diffusion processes”, Dokl. AN SSSR, 341:2 (1995), 173–176 | MR | Zbl

[8] A. Yu. Pilipenko, “On the Skorokhod mapping for equations with reflection and possible jumplike exit from a boundary”, Ukrainian Math. J., 63:9 (2012), 1415–1432 | DOI | MR | Zbl

[9] M. I. Portenko, Diffusion Processes in Media with Membranes, Proceedings of the Institute of Mathematics of the National Academy of Sciences of the Ukraine, Kyiv, 1995 | MR

[10] B. I. Kopytko, M. I. Portenko, “The problem of pasting together two diffusion processes and classical potentials”, Theory Stoch. Process, 15:2 (2009), 126–139 | MR | Zbl

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 | MR | Zbl

[12] H. Langer, W. Schenk, “Knotting of one-dimensional Feller process”, Math. Nachr., 113 (1983), 151–161 | DOI | MR | Zbl

[13] B. I. Kopytko, R. V. Shevchuk, “On Feller semigroup generated by solution of nonlocal parabolic conjugation problem”, Carpathian Math. Publ., 10:2 (2018), 333–345 | MR | Zbl

[14] B. I. Kopytko, R. V. Shevchuk, “Diffusions in one-dimensional bounded domains with reflection, absorption and jumps at the boundary and at some interior point”, Journal of Applied Mathematics and Computational Mechanics, 12:1 (2013), 55–68 | DOI | MR | Zbl

[15] B. I. Kopytko, R. V. Shevchuk, “One-dimensional diffusion processes in bounded domains with boundary conditions and conjugation condition of Feller-Wentzell”, Bukovinian Math. Journal, 1:1-2 (2013), 77–85 | Zbl

[16] B. I. Kopytko, R. V. Shevchuk, “On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition”, Theory Stoch. Process., 17:2 (2011), 55–70 | MR | Zbl

[17] A. Friedman, Partial differential equations of parabolic type, Mir, Moscow, 1968 | MR | Zbl

[18] E. Holmgren, “Sur une application de l'équation de M. Volterra”, Ark. Mat. Astronom. Fys., 3 (1907), 1–4

[19] L. I. Kamynin, “The existence of a solution of boundary-value problems for a parabolic equation with discontinuous coefficients”, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 721–744 | MR | Zbl

[20] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964), 1006–1024 | MR

[21] E. A. Baderko, “Boundary value problems for a parabolic equation, and boundary integral equations”, Differ. Uravn., 28:1 (1992), 17–23 | MR

[22] E. B. Dynkin, Markov processes, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 | MR | Zbl