Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_1_a4, author = {Alexey Rudenko}, title = {Intersection local times in $L_2$ for {Markov} processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {64--95}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/} }
Alexey Rudenko. Intersection local times in $L_2$ for Markov processes. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 64-95. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/
[1] R. M. Blumenthal, R. K. Getoor, “Some theorems on stable processes”, Trans. Amer. Math. Soc., 95 (1960), 263–273 | DOI | MR | Zbl
[2] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified {L}ie groups and potential theory for their sub-{L}aplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR
[3] M. Chaleyat-Maurel, J.-F. Le Gall, “Green function, capacity and sample path properties for a class of hypoelliptic diffusion processes”, Probab. Theory Related Fields, 83:1-2 (1989), 219–264 | DOI | MR | Zbl
[4] M. Chaleyat-Maurel, J.-F. Le Gall, “On polar sets for hypoelliptic diffusion processes”, Stochastic analysis and related topics, II (Silivri, 1988), Lecture Notes in Math., 1444, Springer, Berlin, 1988, 204–212 | DOI | MR
[5] E. B. Dynkin, “Regularized self-intersection local times of planar {B}rownian motion”, The Annals of Probability, 16:1 (1988), 58–74 | DOI | MR | Zbl
[6] S. D. Eidelman, Parabolicheskiye sistemy, Nauka, Moskva, 1964 (in Russian) | MR
[7] Kiyosi Itô, “{B}rownian motions in a {L}ie group”, Proc. Japan Acad., 26:8 (1950), 4–10 | DOI | MR | Zbl
[8] Jean-François Le Gall, Jay S. Rosen, Narn-Rueih Shieh, “Multiple points of {L}évy processes”, Ann. Probab., 17:2 (1989), 503–515 | DOI | MR | Zbl
[9] Jean-Francois Le Gall, “{W}iener sausage and self-intersection local times”, Journal of Functional Analysis, 88 (1990), 299–341 | DOI | MR | Zbl
[10] Alexander Nagel, Elias M. Stein, Stephen Wainger, “Balls and metrics defined by vector fields. {I}. {B}asic properties”, Acta Math., 155:1-2 (1985), 103–147 | MR | Zbl
[11] J. Rosen, “A renormalized local time for multiple intersections of planar {B}rownian motion”, Seminaire de Probabilities XX, 20 (1986), 515–531 | MR
[12] A. Rudenko, “Some uniform estimates for the transition density of a {B}rownian motion on a {C}arnot group and their application to local times”, Theory of Stoch. Proc., 19(35):1 (2014), 62–90 | MR | Zbl
[13] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992 | MR