Intersection local times in $L_2$ for Markov processes
Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 64-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide sufficient conditions for the existence of intersection and self-intersection local times with additional weight in the space of square integrable random variables for Markov processes under specific local upper bounds for their transition density. We determine when this condition is satisfied for standard Brownian motion, symmetric stable processes and Brownian motions on Carnot group.
Keywords: self-intersection local time, intersection local time, Markov processes, transition density estimates.
Mots-clés : Carnot Group
@article{THSP_2019_24_1_a4,
     author = {Alexey Rudenko},
     title = {Intersection local times in $L_2$ for {Markov} processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {64--95},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/}
}
TY  - JOUR
AU  - Alexey Rudenko
TI  - Intersection local times in $L_2$ for Markov processes
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 64
EP  - 95
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/
LA  - en
ID  - THSP_2019_24_1_a4
ER  - 
%0 Journal Article
%A Alexey Rudenko
%T Intersection local times in $L_2$ for Markov processes
%J Teoriâ slučajnyh processov
%D 2019
%P 64-95
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/
%G en
%F THSP_2019_24_1_a4
Alexey Rudenko. Intersection local times in $L_2$ for Markov processes. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 64-95. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a4/

[1] R. M. Blumenthal, R. K. Getoor, “Some theorems on stable processes”, Trans. Amer. Math. Soc., 95 (1960), 263–273 | DOI | MR | Zbl

[2] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified {L}ie groups and potential theory for their sub-{L}aplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR

[3] M. Chaleyat-Maurel, J.-F. Le Gall, “Green function, capacity and sample path properties for a class of hypoelliptic diffusion processes”, Probab. Theory Related Fields, 83:1-2 (1989), 219–264 | DOI | MR | Zbl

[4] M. Chaleyat-Maurel, J.-F. Le Gall, “On polar sets for hypoelliptic diffusion processes”, Stochastic analysis and related topics, II (Silivri, 1988), Lecture Notes in Math., 1444, Springer, Berlin, 1988, 204–212 | DOI | MR

[5] E. B. Dynkin, “Regularized self-intersection local times of planar {B}rownian motion”, The Annals of Probability, 16:1 (1988), 58–74 | DOI | MR | Zbl

[6] S. D. Eidelman, Parabolicheskiye sistemy, Nauka, Moskva, 1964 (in Russian) | MR

[7] Kiyosi Itô, “{B}rownian motions in a {L}ie group”, Proc. Japan Acad., 26:8 (1950), 4–10 | DOI | MR | Zbl

[8] Jean-François Le Gall, Jay S. Rosen, Narn-Rueih Shieh, “Multiple points of {L}évy processes”, Ann. Probab., 17:2 (1989), 503–515 | DOI | MR | Zbl

[9] Jean-Francois Le Gall, “{W}iener sausage and self-intersection local times”, Journal of Functional Analysis, 88 (1990), 299–341 | DOI | MR | Zbl

[10] Alexander Nagel, Elias M. Stein, Stephen Wainger, “Balls and metrics defined by vector fields. {I}. {B}asic properties”, Acta Math., 155:1-2 (1985), 103–147 | MR | Zbl

[11] J. Rosen, “A renormalized local time for multiple intersections of planar {B}rownian motion”, Seminaire de Probabilities XX, 20 (1986), 515–531 | MR

[12] A. Rudenko, “Some uniform estimates for the transition density of a {B}rownian motion on a {C}arnot group and their application to local times”, Theory of Stoch. Proc., 19(35):1 (2014), 62–90 | MR | Zbl

[13] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992 | MR