Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_1_a3, author = {Vladyslav Bogun}, title = {Almost sure asymptotic expansions for profiles of simply generated random trees}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {49--63}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a3/} }
Vladyslav Bogun. Almost sure asymptotic expansions for profiles of simply generated random trees. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 49-63. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a3/
[1] B. Chauvin, M. Drmota, J. Jabbour-Hattab, “The profile of binary search trees”, Ann. Appl. Probab., 11:4 (2001), 1042–1062 | DOI | MR | Zbl
[2] B. Chauvin, T. Klein, J.-F. Marckert, A. Rouault, “Martingales and profile of binary search trees”, Elect. J. Probab., 10 (2005), 420–435 | DOI | MR | Zbl
[3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel Publishing Company, 1974 | MR | Zbl
[4] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, 1986 | MR | Zbl
[5] L. Devroye, H.-K. Hwang, “Width and mode of the profile for some random trees of logarithmic height”, Ann. Appl. Probab., 16:2 (2006), 886–918 | DOI | MR | Zbl
[6] M. Drmota, Random trees: An interplay between combinatorics and probability, Springer–Verlag, Wien, 2009 | MR | Zbl
[7] M. Drmota, H.-K. Hwang, “Profiles of random trees: Correlation and width of random recursive trees and binary search trees”, Advances in Applied Probability, 37:2 (2005), 321–341 | DOI | MR | Zbl
[8] M. Drmota, S. Janson, R. Neininger, “A functional limit theorem for the profile of search trees”, Ann. Appl. Probab., 18:1 (2008), 288–333 | DOI | MR | Zbl
[9] V. Feray, P.-L. Meliot, A. Nikeghbali, Mod-$\phi$ Convergence: Normality Zones and Precise Deviations, SpringerBriefs in Probability and Mathematical Statistics. Springer International Publishing, 2016 | MR | Zbl
[10] R. Gouet, “Strong Convergence of Proportions in a Multicolor Polya Urn”, Journal of Applied Probability, 34:2 (1997), 426–435 | DOI | MR | Zbl
[11] M. Fuchs, H.-K. Hwang, R. Neininger, “Profiles of random trees: limit theorems for random recursive trees and binary search trees”, Algorithmica, 46:3-4 (2006), 367–407 | DOI | MR | Zbl
[12] H.-K. Hwang, “Profiles of random trees: plane-oriented recursive trees”, Random Structures Algorithms, 30:3 (2007), 380–413 | DOI | MR | Zbl
[13] J. Jacod, E. Kowalski, A. Nikeghbali, “Mod-Gaussian convergence: new limit theorems in probability and number theory”, Forum Math., 23:4 (2011), 835–873 | DOI | MR | Zbl
[14] Z. Kabluchko, A. Marynych, H. Sulzbach, General Edgeworth expansions with applications to profiles of random trees, 27:6 (2017), 3478–3524 | MR | Zbl
[15] Z. Katona, “Width of a scale-free tree”, J. Appl. Probab., 42:3 (2005), 839–850 | DOI | MR | Zbl
[16] E. Kowalski, A. Nikeghbali, “Mod-Poisson convergence in probability and number theory”, Int. Math. Res. Not. IMRN, 2010, no. 18, 3549–3587 | DOI | MR | Zbl
[17] H. Mahmound, Polya urn models, CRC Press, 2009 | MR
[18] U. Roster, “A limit theorem for “Quicksort””, RAIRO Inform. Theor. Appl., 25:1 (1991), 85–100 | DOI | MR
[19] E.-M. Schopp, “A functional limit theorem for the profile of b-ary trees”, Ann. Appl. Probab., 20:3 (2010), 907–950 | DOI | MR | Zbl
[20] H. Sulzbach, “A functional limit law for the profile of plane-oriented recursive trees”, In Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 339–350 | MR | Zbl