Modelling of the queuing system with an increasing demand intensity in the empty state
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is dedicated to formation of the served demand flow restoration function and lost demand flow restoration function when the queuing system operates with an increasing demand intensity in the empty state. The paper shows the relation between the input flow and servicing.
Keywords: Queuing system, transition probabilities, exponent distribution.
Mots-clés : Markov chain
@article{THSP_2018_23_2_a6,
     author = {L. A. Votyakova and L. I. Nakonechna},
     title = {Modelling of the queuing system with an increasing demand intensity in the empty state},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/}
}
TY  - JOUR
AU  - L. A. Votyakova
AU  - L. I. Nakonechna
TI  - Modelling of the queuing system with an increasing demand intensity in the empty state
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 75
EP  - 79
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/
LA  - en
ID  - THSP_2018_23_2_a6
ER  - 
%0 Journal Article
%A L. A. Votyakova
%A L. I. Nakonechna
%T Modelling of the queuing system with an increasing demand intensity in the empty state
%J Teoriâ slučajnyh processov
%D 2018
%P 75-79
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/
%G en
%F THSP_2018_23_2_a6
L. A. Votyakova; L. I. Nakonechna. Modelling of the queuing system with an increasing demand intensity in the empty state. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/