Modelling of the queuing system with an increasing demand intensity in the empty state
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is dedicated to formation of the served demand flow restoration function and lost demand flow restoration function when the queuing system operates with an increasing demand intensity in the empty state. The paper shows the relation between the input flow and servicing.
Keywords: Queuing system, transition probabilities, exponent distribution.
Mots-clés : Markov chain
@article{THSP_2018_23_2_a6,
     author = {L. A. Votyakova and L. I. Nakonechna},
     title = {Modelling of the queuing system with an increasing demand intensity in the empty state},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/}
}
TY  - JOUR
AU  - L. A. Votyakova
AU  - L. I. Nakonechna
TI  - Modelling of the queuing system with an increasing demand intensity in the empty state
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 75
EP  - 79
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/
LA  - en
ID  - THSP_2018_23_2_a6
ER  - 
%0 Journal Article
%A L. A. Votyakova
%A L. I. Nakonechna
%T Modelling of the queuing system with an increasing demand intensity in the empty state
%J Teoriâ slučajnyh processov
%D 2018
%P 75-79
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/
%G en
%F THSP_2018_23_2_a6
L. A. Votyakova; L. I. Nakonechna. Modelling of the queuing system with an increasing demand intensity in the empty state. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/

[1] A. A. Borovkov, Asymptotical processes in the queuing theory, Nauka, M., 1980, 381 pp. (in Russian) | MR

[2] A. A. Borovkov, Probabilistic methods in the queuing theory, Nauka, M., 1972, 367 pp. (in Russian) | MR

[3] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Queuing theory, Vyssh. Shk, M., 1982, 256 pp. (in Russian)

[4] S. Karlin, Fundamentals of the random process theory, transl. from English, Mir, M., 1971, 536 pp. (in Russian) | MR

[5] A. N. Korlat, V. N. Kuznetsov, M. M. Novikov, A. F. Turbin, Semi-Markov models of restored queuing systems, Shtiintsa, Kishinev, 1991, 276 pp. (in Russian) | MR

[6] V. S. Koroliuk, A. F. Turbin, Semi-Markov processes and their applications, Naukova dumka, K., 1976, 184 pp. (in Russian) | MR

[7] V. D. Porodnikov, N. V. Rumiantsev, “About one method of analysis of complex queuing systems and optimal choice of the operating mode”, 3-Ukrainian conference on automatic control “Automatika-96”, v. 2, UAAU, SevGu, 1996, 139–140 (in Russian)

[8] V. D. Porodnikov, N. V. Rumiantsev, “Numerical methods of analysis of the precision casting workshop functioning”, Collection of works of the International Scientific and Technical Conference “Progressive Technologies of Mechanical Engineering and Modernity”, Sevastopol — Donetsk, 1997, 203–204 (in Russian)

[9] V. D. Porodnikov, A. D. Shatashvili, “Research of the queuing systems with a switchable operation mode, depending on the queue length”, Ergodic theory of Markov processes, All-Union School-Seminar, t. of Reports, Kyzyl, 1987, 44–45 (in Russian)

[10] V. D. Porodnikov, A. D. Shatashvili, “About one system with a variable input flow and group service”, Thesis Report of XXI School, Colloquium, Metsniereba, Tbilisi, 1987, 37 (in Russian)

[11] T. L. Saati, Elements of the queuing theory and its applications, transl. from English, Sov. Radio, M., 1971, 520 pp. (in Russian) | MR