Modelling of the queuing system with an increasing demand intensity in the empty state
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is dedicated to formation of the served demand flow restoration function and lost demand flow restoration function when the queuing system operates with an increasing demand intensity in the empty state. The paper shows the relation between the input flow and servicing.
Keywords:
Queuing system, transition probabilities, exponent distribution.
Mots-clés : Markov chain
Mots-clés : Markov chain
@article{THSP_2018_23_2_a6,
author = {L. A. Votyakova and L. I. Nakonechna},
title = {Modelling of the queuing system with an increasing demand intensity in the empty state},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {75--79},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/}
}
TY - JOUR AU - L. A. Votyakova AU - L. I. Nakonechna TI - Modelling of the queuing system with an increasing demand intensity in the empty state JO - Teoriâ slučajnyh processov PY - 2018 SP - 75 EP - 79 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/ LA - en ID - THSP_2018_23_2_a6 ER -
L. A. Votyakova; L. I. Nakonechna. Modelling of the queuing system with an increasing demand intensity in the empty state. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 75-79. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a6/