Duality for coalescing stochastic flows on the real line
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 55-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of coalescing stochastic flows on the real line the existence of dual flows is proved. A stochastic flow and its dual are constructed as a forward and backward perfect cocycles over the same metric dynamical system. The metric dynamical system itself is defined on a new state space for coalescing flows. General results are applied to Arratia flows with drift.
Keywords: Stochastic flow, duality, random dynamical system, Arratia flow.
@article{THSP_2018_23_2_a5,
     author = {G. V. Ryabov},
     title = {Duality for coalescing stochastic flows on the real line},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {55--74},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a5/}
}
TY  - JOUR
AU  - G. V. Ryabov
TI  - Duality for coalescing stochastic flows on the real line
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 55
EP  - 74
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a5/
LA  - en
ID  - THSP_2018_23_2_a5
ER  - 
%0 Journal Article
%A G. V. Ryabov
%T Duality for coalescing stochastic flows on the real line
%J Teoriâ slučajnyh processov
%D 2018
%P 55-74
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a5/
%G en
%F THSP_2018_23_2_a5
G. V. Ryabov. Duality for coalescing stochastic flows on the real line. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 55-74. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a5/

[1] L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998 | MR

[2] R. A. Arratia, Coalescing Brownian motions on the line, PhD thesis, University of Wisconsin, 1979 | MR

[3] R. A. Arratia, Coalescing Brownian motions and the voter model on $\mathbb{Z}$, unpublished partial manuscript (circa 1981), available from rarratia\@math.usc.edu | MR

[4] N. Berestycki, Ch. Garban, A. Sen, “Coalescing Brownian flows: a new approach”, Ann. Probab., 43:6 (2015), 3177–3215 | DOI | MR | Zbl

[5] V. I. Bogachev, Gaussian measures, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[6] R. W. R. Darling, Constructing nonhomeomorphic stochastic flows, Mem. Amer. Math. Soc., 70, no. 376, 1987, vi+97 pp. | MR

[7] A. A. Dorogovtsev, Ia. A. Korenovska, “Essential sets for random operations constructed from an Arratia flow”, Commun. Stoch. An., 11:3 (2017), 301–312 | MR

[8] A. A. Dorogovtsev, Ia. A. Korenovska, E. V. Glinyanaya, “On some random integral operators generated by an Arratia flow”, Theory Stoch. Proc., 22:2 (2017), 8–18 | MR | Zbl

[9] A. A. Dorogovtsev, G. V. Riabov, B. Schmalfuß, “Stationary points for coalescing stochastic flows on $\mathbb{R}$”, Stochastic Processes and Applications, 2018 (to appear) , arXiv: 1808.05969

[10] A. A. Dorogovtsev, M. B. Vovchanskii, “Arratia flow with drift and Trotter formula for Brownian web”, Commun. Stoch. An., 12:1 (2018), 89–108 | MR

[11] S. N. Ethier, Th. G. Kurtz, Markov processes. Characterization and convergence, John Wiley Sons, Inc., New York, 1986 | MR | Zbl

[12] L. R. G. Fontes, M. Isopi, C. M. Newman, K. Ravishankar, “The Brownian web: characterization and convergence”, Ann. Probab., 32:4 (2004), 2857–2883 | DOI | MR | Zbl

[13] Th. E. Harris, “Coalescing and noncoalescing stochastic flows in $\mathbb{R}^1$”, Stochastic Proc. Appl., 17:2 (1984), 187–210 | DOI | MR | Zbl

[14] O. Kallenberg, Foundations of Modern Probability, Second Edition, Springer-Verlag, New York, 2001 | MR

[15] H. Kunita, “Stochastic differential equations and stochastic flows of diffeomorphisms”, École d'été de probabilités de Saint-Flour. XII–1982, ed. P.L. Hennequin, Springer, Berlin, 1982, 143–303 | MR

[16] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[17] Y. Le Jan, O. Raimond, “Flows, coalescence and noise”, Ann. Probab., 32:2 (2004), 1247–1315 | DOI | MR | Zbl

[18] Th. M. Liggett, Interacting particle systems, Springer-Verlag, New York, 1985 | MR | Zbl

[19] J. Norris, A. Turner, “Weak convergence of the localized disturbance flow to the coalescing Brownian flow”, Ann. Probab., 43:3 (2015), 935–970 | DOI | MR | Zbl

[20] N. O'Connell, A. Unwin, “Collision times and exit times from cones: a duality”, Stochastic Proc. Appl., 43:2 (1992), 291–301 | DOI | MR | Zbl

[21] G. V. Riabov, “Random dynamical systems generated by coalescing stochastic flows on $\mathbb{R}$”, 1850031, Stoch. Dyn., 18:4 (2018), 24 pp. | DOI | MR | Zbl

[22] E. Schertzer, R. Sun, J. M. Swart, Stochastic flows in the Brownian web and net, Mem. Amer. Math. Soc., 227, no. 1065, 2014, vi+160 pp. | MR

[23] B. T{ o}th, W. Werner, “The true self-repelling motion”, Probab. Theory Related Fields, 111:3 (1998), 375–452 | DOI | MR | Zbl