Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_2_a4, author = {Oxana A. Manita and Maxim S. Romanov and Stanislav V. Shaposhnikov}, title = {Estimates of distances between solutions of {Fokker--Planck--Kolmogorov} equations with partially degenerate diffusion matrices}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {41--54}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a4/} }
TY - JOUR AU - Oxana A. Manita AU - Maxim S. Romanov AU - Stanislav V. Shaposhnikov TI - Estimates of distances between solutions of Fokker--Planck--Kolmogorov equations with partially degenerate diffusion matrices JO - Teoriâ slučajnyh processov PY - 2018 SP - 41 EP - 54 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a4/ LA - en ID - THSP_2018_23_2_a4 ER -
%0 Journal Article %A Oxana A. Manita %A Maxim S. Romanov %A Stanislav V. Shaposhnikov %T Estimates of distances between solutions of Fokker--Planck--Kolmogorov equations with partially degenerate diffusion matrices %J Teoriâ slučajnyh processov %D 2018 %P 41-54 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a4/ %G en %F THSP_2018_23_2_a4
Oxana A. Manita; Maxim S. Romanov; Stanislav V. Shaposhnikov. Estimates of distances between solutions of Fokker--Planck--Kolmogorov equations with partially degenerate diffusion matrices. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 41-54. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a4/
[1] V. I. Bogachev, Measure theory, Springer-Verlag, Berlin, 2007 | MR | Zbl
[2] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl
[3] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Uniqueness problems for degenerate Fokker–Planck–Kolmogorov equations”, J. Math. Sci. (New York), 207:2 (2015), 147–165 | DOI | MR | Zbl
[4] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “An analytic approach to infinite dimensional continuity and Fokker–Planck–Kolmogorov equations”, Annali della Scuola Normale Super. di Pisa, 14:3 (2015), 983–1023 | MR | Zbl
[5] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “On the uniqueness of solutions to continuity equations”, J. Differ. Equ., 259:8 (2015), 3854–3873 | DOI | MR | Zbl
[6] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271 (2016), 1262–1300 | DOI | MR | Zbl
[7] T. D. Frank, Nonlinear Fokker–Planck equations. Fundamentals and applications, Springer-Verlag, Berlin, 2005 | MR | Zbl
[8] V. Konakov, A. Kozhina, S. Menozzi, “Stability of densities for perturbed diffusions and Markov chains”, ESAIM: Probab. Stat., 21 (2017), 88–112 | DOI | MR | Zbl
[9] H. Li, D. Luo, “Quantitative stability estimates for solutions of Fokker–Planck equations”, J. Math. Pures Appl., 122 (2019), 125–163 | DOI | MR | Zbl
[10] O. A. Manita, “Estimates for transportation costs along solutions to Fokker–Planck–Kolmogorov equations with dissipative drifts”, Rendiconti Lincei – Matem. Appl., 28:3 (2018), 601–618 | DOI | MR
[11] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations”, Nonlinear Analysis: Theory, Methods and Applications, 128 (2015), 199–226 | DOI | MR | Zbl
[12] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Fokker–Planck–Kolmogorov equations with a partially degenerate diffusion matrix”, Doklady Math., 96:1 (2017), 384–388 | DOI | MR | Zbl
[13] O. A. Manita, S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, St. Petersburg Math. J., 25:1 (2014), 43–62 | DOI | MR | Zbl
[14] O. A. Manita, S. V. Shaposhnikov, “On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains”, J. Dynamics Differ. Equ., 28:2 (2016), 493–518 | DOI | MR | Zbl
[15] H. Risken, The Fokker–Planck equation, Springer–Verlag, Berlin, 1996 | MR | Zbl
[16] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin – New York, 1979 | MR | Zbl