Limit theorems for the number of clusters of the Arratia flow
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 33-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the central limit theorem for the number of clusters formed by the particles of the Arratia flow starting from the interval $[0;n]$ as $n\to\infty$, obtain an estimate of the Berry–Esseen type for the rate of this convergence, and prove the corresponding functional law of the iterated logarithm.
Keywords: Central limit theorem, Berry–Esseen inequality, functional law of the iterated logarithm, coalescing Brownian motions, Arratia flow, clusters.
@article{THSP_2018_23_2_a3,
     author = {E. V. Glinyanaya and V. V. Fomichov},
     title = {Limit theorems for the number of clusters of the {Arratia} flow},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/}
}
TY  - JOUR
AU  - E. V. Glinyanaya
AU  - V. V. Fomichov
TI  - Limit theorems for the number of clusters of the Arratia flow
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 33
EP  - 40
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/
LA  - en
ID  - THSP_2018_23_2_a3
ER  - 
%0 Journal Article
%A E. V. Glinyanaya
%A V. V. Fomichov
%T Limit theorems for the number of clusters of the Arratia flow
%J Teoriâ slučajnyh processov
%D 2018
%P 33-40
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/
%G en
%F THSP_2018_23_2_a3
E. V. Glinyanaya; V. V. Fomichov. Limit theorems for the number of clusters of the Arratia flow. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 33-40. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/