Limit theorems for the number of clusters of the Arratia flow
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the central limit theorem for the number of clusters formed by the particles of the Arratia flow starting from the interval $[0;n]$ as $n\to\infty$, obtain an estimate of the Berry–Esseen type for the rate of this convergence, and prove the corresponding functional law of the iterated logarithm.
Keywords: Central limit theorem, Berry–Esseen inequality, functional law of the iterated logarithm, coalescing Brownian motions, Arratia flow, clusters.
@article{THSP_2018_23_2_a3,
     author = {E. V. Glinyanaya and V. V. Fomichov},
     title = {Limit theorems for the number of clusters of the {Arratia} flow},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {33--40},
     year = {2018},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/}
}
TY  - JOUR
AU  - E. V. Glinyanaya
AU  - V. V. Fomichov
TI  - Limit theorems for the number of clusters of the Arratia flow
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 33
EP  - 40
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/
LA  - en
ID  - THSP_2018_23_2_a3
ER  - 
%0 Journal Article
%A E. V. Glinyanaya
%A V. V. Fomichov
%T Limit theorems for the number of clusters of the Arratia flow
%J Teoriâ slučajnyh processov
%D 2018
%P 33-40
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/
%G en
%F THSP_2018_23_2_a3
E. V. Glinyanaya; V. V. Fomichov. Limit theorems for the number of clusters of the Arratia flow. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 33-40. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a3/

[1] R. A. Arratia, Coalescing Brownian motions on the line, (PhD thesis) PhD dissertation, University of Wisconsin, Madison, 1979, 128 pp. | MR

[2] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine, 2007 (in Russian) | MR | Zbl

[3] A. A. Dorogovtsev, Stochastic flows, CRC Press (to appear)

[4] A. A. Dorogovtsev, A. V. Gnedin, M. B. Vovchanskii, “Iterated logarithm law for sizes of clusters in Arratia flow”, Theory of Stochastic Processes, 18(34):2 (2012), 1–7 | MR | Zbl

[5] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stochastics and Dynamics, 10:3 (2010), 315–339 | DOI | MR | Zbl

[6] V. V. Fomichov, “The distribution of the number of clusters in the Arratia flow”, Communications on Stochastic Analysis, 10:3 (2016), 257–270 | DOI | MR

[7] E. V. Glinyanaya, “Spatial ergodicity of the Harris flows”, Communications on Stochastic Analysis, 11:2 (2017), 223–231 | DOI | MR

[8] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $R_1$”, Stochastic Processes and their Applications, 17 (1984), 187–210 | DOI | MR | Zbl

[9] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1971, 443 pp. | MR | Zbl

[10] V. Kargin, “On Pfaffian random point fields”, Journal of Statistical Physics, 154:3 (2014), 681–704 | DOI | MR | Zbl

[11] H. Matsumoto, “Coalescing stochastic flows on the real line”, Osaka Journal of Mathematics, 26:1 (1989), 139–158 | MR | Zbl

[12] H. Oodaira, K. I. Yoshihara, “The law of the iterated logarithm for stationary processes satisfying mixing conditions”, Kodai Math. Sem. Rep., 23 (1971), 311–334 | DOI | MR | Zbl

[13] E. Rio, “The functional law of the iterated logarithm for stationary strongly mixing sequences”, The Annals of Probability, 23:3 (1995), 1188–1203 | DOI | MR | Zbl

[14] A. N. Tikhomirov, “On the convergence rate in the central limit theorem for weakly dependent random variables”, Theory of Probability and its Applications, 25:4 (1980), 790–809 | DOI | MR

[15] B. Tóth, W. Werner, “The true self-repelling motion”, Probability Theory and Related Fields, 111:3 (1998), 375–452 | DOI | MR | Zbl

[16] R. Tribe, O. Zaboronski, “Pfaffian formulae for one dimensional coalescing and annihilating systems”, Electronic Journal of Probability, 16:76 (2011), 2080–2103 | DOI | MR | Zbl