Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_2_a0, author = {N. Alemohammad}, title = {Value at risk forecasting of gold price: a comparison between the {GARCH} and {LST-GARCH} models}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--6}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/} }
TY - JOUR AU - N. Alemohammad TI - Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models JO - Teoriâ slučajnyh processov PY - 2018 SP - 1 EP - 6 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/ LA - en ID - THSP_2018_23_2_a0 ER -
N. Alemohammad. Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 1-6. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/
[1] N. Alemohammad, S. Rezakhah, S. H. Alizadeh, “Markov switching component GARCH model: stability and forecasting”, COMMUN STAT THEOR M., 45:15 (2016), 4332–4348 | DOI | MR | Zbl
[2] D. Ardia, “Bayesian estimation of a Markov switching threshold asymmetric GARCH model with Student-t innovations”, Econom J, 2009, no. 12, 105–126 | DOI | MR | Zbl
[3] L. Bauwens, A. Preminger, V. K. Rombouts, “Theory and inference for Markov switching GARCH model”, Econom J, 2010, no. 13, 218–244 | DOI | MR | Zbl
[4] T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity”, J Econom, 1986, no. 31, 307–327 | DOI | MR | Zbl
[5] W. H. Cheng, J. B. Su, Y. P. Tzou, “Value-at-Risk Forecasts in Gold Market Under Oil Shocks”, Middle Eastern Finance and Economics, 2009, no. 4, 48–64
[6] P. Christoffersen, “Evaluating interval forecasting”, Int Econ Rev, 1998, no. 39, 841–862 | DOI | MR
[7] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation”, Econometrica, 1982, no. 50, 987–1007 | DOI | MR | Zbl
[8] R. F. Engle, “Discusion: stock volatility and the crash of '87”, Review of Financial Studies, 1990, no. 3, 103–106 | DOI
[9] L. R. Glosten, R. Jagannathan, D. Runkle, “On the relation between the expected value and the volatility of the nominal excess return on stocks”, J Finance, 1993, no. 48, 1779–1801 | DOI
[10] G. Gonzalez-Rivera, “Smooth transition GARCH models”, Stud Nonlinear Dyn Econom, 1998, no. 3, 61–78 | Zbl
[11] M. Haas, J. Krause, M. S. Paolella, S. c. Steudc, “Time varying mixture GARCH models and asymmetric volatility”, The North American Journal of Economics and Finance, 2013, no. 26, 602–623 | DOI | MR
[12] M. Lubrano, “Smooth transition GARCH models: a Bayesian approach mixture models”, Recherches Economiques de Louvain, 2001, no. 67, 257–287
[13] M. C. Medeiros, A. Veiga, “Modeling multiple regimes in financial volatility with a flexible coefficient GARCH(1,1)”, Econom. Theory, 2009, no. 25, 117–161 | DOI | MR | Zbl
[14] D. B. Nelson, “Conditional heteroskedasticity in asset returns: a new approach”, Econometrica, 1991, no. 59, 347–370 | DOI | MR | Zbl
[15] C. Pierdzioch, M. Risse, S. Rohloff, “On the efficiency of the gold market: Results of a real-time forecasting approach”, International Review of Financial Analysis, 2014, no. 32, 95–108 | DOI
[16] S. Truck, K. Liang, “Modelling and forecasting volatility in the gold market”, International Journal of Banking and Finance, 2012, no. 9, 48–80
[17] R. S. Tsay, Analysis of financial time series, 2-nd ed, John Wiley, New York, 2005 | MR | Zbl
[18] J. M. Zakoian, “Threshold heteroskedastic models”, J. Econ. Dyn. Control, 1994, no. 27, 577–597 | MR