Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 1-6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Value at risk is one of the most important measure in finance. This paper evaluates the value at risk forecasting performance of the GARCH and logistic smooth transition GARCH (LST-GARCH) models for the gold markets. The LST-GARCH model is capable to react differently to positive and negative shocks in financial time series. The results show that the LST-GARCH structure provides the more adequate value at risk forecasts relative to the GARCH model.
Keywords: Forecasting, Smooth transition GARCH, Leverage effect, Value at Risk.
@article{THSP_2018_23_2_a0,
     author = {N. Alemohammad},
     title = {Value at risk forecasting of gold price: a comparison between the {GARCH} and {LST-GARCH} models},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--6},
     year = {2018},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/}
}
TY  - JOUR
AU  - N. Alemohammad
TI  - Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 1
EP  - 6
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/
LA  - en
ID  - THSP_2018_23_2_a0
ER  - 
%0 Journal Article
%A N. Alemohammad
%T Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models
%J Teoriâ slučajnyh processov
%D 2018
%P 1-6
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/
%G en
%F THSP_2018_23_2_a0
N. Alemohammad. Value at risk forecasting of gold price: a comparison between the GARCH and LST-GARCH models. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 1-6. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a0/

[1] N. Alemohammad, S. Rezakhah, S. H. Alizadeh, “Markov switching component GARCH model: stability and forecasting”, COMMUN STAT THEOR M., 45:15 (2016), 4332–4348 | DOI | MR | Zbl

[2] D. Ardia, “Bayesian estimation of a Markov switching threshold asymmetric GARCH model with Student-t innovations”, Econom J, 2009, no. 12, 105–126 | DOI | MR | Zbl

[3] L. Bauwens, A. Preminger, V. K. Rombouts, “Theory and inference for Markov switching GARCH model”, Econom J, 2010, no. 13, 218–244 | DOI | MR | Zbl

[4] T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity”, J Econom, 1986, no. 31, 307–327 | DOI | MR | Zbl

[5] W. H. Cheng, J. B. Su, Y. P. Tzou, “Value-at-Risk Forecasts in Gold Market Under Oil Shocks”, Middle Eastern Finance and Economics, 2009, no. 4, 48–64

[6] P. Christoffersen, “Evaluating interval forecasting”, Int Econ Rev, 1998, no. 39, 841–862 | DOI | MR

[7] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation”, Econometrica, 1982, no. 50, 987–1007 | DOI | MR | Zbl

[8] R. F. Engle, “Discusion: stock volatility and the crash of '87”, Review of Financial Studies, 1990, no. 3, 103–106 | DOI

[9] L. R. Glosten, R. Jagannathan, D. Runkle, “On the relation between the expected value and the volatility of the nominal excess return on stocks”, J Finance, 1993, no. 48, 1779–1801 | DOI

[10] G. Gonzalez-Rivera, “Smooth transition GARCH models”, Stud Nonlinear Dyn Econom, 1998, no. 3, 61–78 | Zbl

[11] M. Haas, J. Krause, M. S. Paolella, S. c. Steudc, “Time varying mixture GARCH models and asymmetric volatility”, The North American Journal of Economics and Finance, 2013, no. 26, 602–623 | DOI | MR

[12] M. Lubrano, “Smooth transition GARCH models: a Bayesian approach mixture models”, Recherches Economiques de Louvain, 2001, no. 67, 257–287

[13] M. C. Medeiros, A. Veiga, “Modeling multiple regimes in financial volatility with a flexible coefficient GARCH(1,1)”, Econom. Theory, 2009, no. 25, 117–161 | DOI | MR | Zbl

[14] D. B. Nelson, “Conditional heteroskedasticity in asset returns: a new approach”, Econometrica, 1991, no. 59, 347–370 | DOI | MR | Zbl

[15] C. Pierdzioch, M. Risse, S. Rohloff, “On the efficiency of the gold market: Results of a real-time forecasting approach”, International Review of Financial Analysis, 2014, no. 32, 95–108 | DOI

[16] S. Truck, K. Liang, “Modelling and forecasting volatility in the gold market”, International Journal of Banking and Finance, 2012, no. 9, 48–80

[17] R. S. Tsay, Analysis of financial time series, 2-nd ed, John Wiley, New York, 2005 | MR | Zbl

[18] J. M. Zakoian, “Threshold heteroskedastic models”, J. Econ. Dyn. Control, 1994, no. 27, 577–597 | MR