Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion
Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a Berry-Esseen type bound for the distribution of the maximum likelihood estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion.
Keywords: Fractional Ornstein-Uhlenbeck type process, sub-fractional Brownian motion, Maximum likelihood estimation, Berry-Esseen type bound.
@article{THSP_2018_23_1_a6,
     author = {B. L. S. Prakasa Rao},
     title = {Berry-Esseen type bound for fractional {Ornstein-Uhlenbeck} type process driven by sub-fractional {Brownian} motion},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/}
}
TY  - JOUR
AU  - B. L. S. Prakasa Rao
TI  - Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 82
EP  - 92
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/
LA  - en
ID  - THSP_2018_23_1_a6
ER  - 
%0 Journal Article
%A B. L. S. Prakasa Rao
%T Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion
%J Teoriâ slučajnyh processov
%D 2018
%P 82-92
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/
%G en
%F THSP_2018_23_1_a6
B. L. S. Prakasa Rao. Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 82-92. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/

[1] A. V. Artemov, E. V. Burnaev, “Optimal estimation of a signal perturbed by a fractional Brownian motion”, Theory Probab. Appl., 60 (2016), 126–134 | DOI | MR | Zbl

[2] T. Bojdecki, L. Gorostiza, A. Talarczyk, “Sub-fractional Brownian motion and its relation to occupation times”, Statist. Probab. Lett., 69 (2004), 405–419 | DOI | MR | Zbl

[3] A. Diedhiou, C. Manga, I. Mendy, “Parametric estimation for SDEs with additive sub-fractional Brownian motion”, Journal of Numerical Mathematics and Stochastics, 3 (2011), 37–45 | MR | Zbl

[4] K. Dzhaparidze, H. Van Zanten, “A series expansion of fractional Brownian motion”, Probab. Theory Related Fields, 103 (2004), 39–55 | MR

[5] Mohammed El Machkouri, Khalifa Es-Sebaiy, Youssef Ouknine, Least squares estimation for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, 2016, arXiv: 1507.00802v2 [math.PR] | MR

[6] W. Feller, An Introduction to Probability Theory and its Applications, New York, Wiley, 1968 | MR | Zbl

[7] P. Hall. C. C. Heyde, Martingale Limit Theory and its Applications, Academic Press, New York, 1980 | MR

[8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 | MR | Zbl

[9] Nenghui Kuang, Bingquan Liu, “Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation”, Brazilian Journal of Probability and Statistics, 29 (2015), 778–789 | DOI | MR | Zbl

[10] Nenghui Kuang, Huantin Xie, “Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk”, Ann. Inst. Statist. Math., 67 (2015), 75–91 | DOI | MR | Zbl

[11] R. S. Liptser, “A strong law of large numbers”, Stochastics, 3 (1980), 217–228 | DOI | MR | Zbl

[12] R. S. Liptser, A. N. Shiryayev, The Theory of Martingales, Kluwer, Dordrecht, 1989 | MR | Zbl

[13] I. Mendy, “Parametric estimation for sub-fractional Ornstein-Uhlenbeck process”, J. Stat. Plan. Infer., 143 (2013), 663–674 | DOI | MR | Zbl

[14] R. Michael, J. Pfanzagl, “The accuracy of the normal approximation for minimum contrast estimate”, Z. Wahr. verw Gebite, 18 (1971), 73–84 | DOI | MR

[15] B. L. S. Prakasa Rao, Asymptotic Theory of Statistical Inference, Wiley, New York, 1987 | MR | Zbl

[16] B. L. S. Prakasa Rao, Semimartingales and Their Statistical Inference, CRC Press, Boca Raton; Chapman and Hall, London, 1999 | MR | Zbl

[17] B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, Wiley, London, 2010 | MR | Zbl

[18] B. L. S. Prakasa Rao, “On some maximal and integral inequalities for sub-fractional Brownian motion”, Stochastic Anal. Appl., 35 (2017), 279–287 | DOI | MR | Zbl

[19] B. L. S. Prakasa Rao, “Optimal estimation of a signal perturbed by a sub-fractional Brownian motion”, Stochastic Anal. Appl., 35 (2017), 533–541 | DOI | MR | Zbl

[20] B. L. S. Prakasa Rao, “Parameter estimation for linear stochastic differential equations driven by sub-fractional Brownian motion”, Random Oper. and Stoch. Equ., 25 (2017), 235–247 | MR | Zbl

[21] G. J. Shen, L. T. Yan, “Estimators for the drift of subfractional Brownian motion”, Communications in Statistics-Theory and Methods, 43 (2014), 1601–1612 | DOI | MR | Zbl

[22] Constantin Tudor, “Some properties of the sub-fractional Brownian motion”, Stochastics, 79 (2007), 431–448 | DOI | MR | Zbl

[23] Constantin Tudor, Prediction and linear filtering with sub-fractional Brownian motion, 2007

[24] Constantin Tudor, “Some aspects of stochastic calculus for the sub-fractional Brownian motion”, Analele Universitat ii Bucaresti, Matematica, Anul LVII (2008), 199–230 | MR | Zbl

[25] Constantin Tudor, “On the Wiener integral with respect to a sub-fractional Brownian motion on an interval”, J. Math. Anal. Appl., 351 (2009), 456–468 | DOI | MR | Zbl

[26] L. Yan, G. Shen, K. He, “Ito's formula for a sub-fractional Brownian motion”, Communications of Stochastic Analysis, 5 (2011), 135–159 | MR | Zbl