Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_1_a6, author = {B. L. S. Prakasa Rao}, title = {Berry-Esseen type bound for fractional {Ornstein-Uhlenbeck} type process driven by sub-fractional {Brownian} motion}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {82--92}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/} }
TY - JOUR AU - B. L. S. Prakasa Rao TI - Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion JO - Teoriâ slučajnyh processov PY - 2018 SP - 82 EP - 92 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/ LA - en ID - THSP_2018_23_1_a6 ER -
%0 Journal Article %A B. L. S. Prakasa Rao %T Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion %J Teoriâ slučajnyh processov %D 2018 %P 82-92 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/ %G en %F THSP_2018_23_1_a6
B. L. S. Prakasa Rao. Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 82-92. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a6/
[1] A. V. Artemov, E. V. Burnaev, “Optimal estimation of a signal perturbed by a fractional Brownian motion”, Theory Probab. Appl., 60 (2016), 126–134 | DOI | MR | Zbl
[2] T. Bojdecki, L. Gorostiza, A. Talarczyk, “Sub-fractional Brownian motion and its relation to occupation times”, Statist. Probab. Lett., 69 (2004), 405–419 | DOI | MR | Zbl
[3] A. Diedhiou, C. Manga, I. Mendy, “Parametric estimation for SDEs with additive sub-fractional Brownian motion”, Journal of Numerical Mathematics and Stochastics, 3 (2011), 37–45 | MR | Zbl
[4] K. Dzhaparidze, H. Van Zanten, “A series expansion of fractional Brownian motion”, Probab. Theory Related Fields, 103 (2004), 39–55 | MR
[5] Mohammed El Machkouri, Khalifa Es-Sebaiy, Youssef Ouknine, Least squares estimation for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, 2016, arXiv: 1507.00802v2 [math.PR] | MR
[6] W. Feller, An Introduction to Probability Theory and its Applications, New York, Wiley, 1968 | MR | Zbl
[7] P. Hall. C. C. Heyde, Martingale Limit Theory and its Applications, Academic Press, New York, 1980 | MR
[8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 | MR | Zbl
[9] Nenghui Kuang, Bingquan Liu, “Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation”, Brazilian Journal of Probability and Statistics, 29 (2015), 778–789 | DOI | MR | Zbl
[10] Nenghui Kuang, Huantin Xie, “Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk”, Ann. Inst. Statist. Math., 67 (2015), 75–91 | DOI | MR | Zbl
[11] R. S. Liptser, “A strong law of large numbers”, Stochastics, 3 (1980), 217–228 | DOI | MR | Zbl
[12] R. S. Liptser, A. N. Shiryayev, The Theory of Martingales, Kluwer, Dordrecht, 1989 | MR | Zbl
[13] I. Mendy, “Parametric estimation for sub-fractional Ornstein-Uhlenbeck process”, J. Stat. Plan. Infer., 143 (2013), 663–674 | DOI | MR | Zbl
[14] R. Michael, J. Pfanzagl, “The accuracy of the normal approximation for minimum contrast estimate”, Z. Wahr. verw Gebite, 18 (1971), 73–84 | DOI | MR
[15] B. L. S. Prakasa Rao, Asymptotic Theory of Statistical Inference, Wiley, New York, 1987 | MR | Zbl
[16] B. L. S. Prakasa Rao, Semimartingales and Their Statistical Inference, CRC Press, Boca Raton; Chapman and Hall, London, 1999 | MR | Zbl
[17] B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, Wiley, London, 2010 | MR | Zbl
[18] B. L. S. Prakasa Rao, “On some maximal and integral inequalities for sub-fractional Brownian motion”, Stochastic Anal. Appl., 35 (2017), 279–287 | DOI | MR | Zbl
[19] B. L. S. Prakasa Rao, “Optimal estimation of a signal perturbed by a sub-fractional Brownian motion”, Stochastic Anal. Appl., 35 (2017), 533–541 | DOI | MR | Zbl
[20] B. L. S. Prakasa Rao, “Parameter estimation for linear stochastic differential equations driven by sub-fractional Brownian motion”, Random Oper. and Stoch. Equ., 25 (2017), 235–247 | MR | Zbl
[21] G. J. Shen, L. T. Yan, “Estimators for the drift of subfractional Brownian motion”, Communications in Statistics-Theory and Methods, 43 (2014), 1601–1612 | DOI | MR | Zbl
[22] Constantin Tudor, “Some properties of the sub-fractional Brownian motion”, Stochastics, 79 (2007), 431–448 | DOI | MR | Zbl
[23] Constantin Tudor, Prediction and linear filtering with sub-fractional Brownian motion, 2007
[24] Constantin Tudor, “Some aspects of stochastic calculus for the sub-fractional Brownian motion”, Analele Universitat ii Bucaresti, Matematica, Anul LVII (2008), 199–230 | MR | Zbl
[25] Constantin Tudor, “On the Wiener integral with respect to a sub-fractional Brownian motion on an interval”, J. Math. Anal. Appl., 351 (2009), 456–468 | DOI | MR | Zbl
[26] L. Yan, G. Shen, K. He, “Ito's formula for a sub-fractional Brownian motion”, Communications of Stochastic Analysis, 5 (2011), 135–159 | MR | Zbl