Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_1_a5, author = {A. O. Pashko and O. I. Vasylyk}, title = {Simulation of fractional {Brownian} motion basing on its spectral representation}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {73--81}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/} }
TY - JOUR AU - A. O. Pashko AU - O. I. Vasylyk TI - Simulation of fractional Brownian motion basing on its spectral representation JO - Teoriâ slučajnyh processov PY - 2018 SP - 73 EP - 81 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/ LA - en ID - THSP_2018_23_1_a5 ER -
A. O. Pashko; O. I. Vasylyk. Simulation of fractional Brownian motion basing on its spectral representation. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/
[1] J.-F. Coeurjolly,, “Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study”, Journal of Statistical Software, 5:1 (2000)
[2] A. B. Dieker, M. Mandjes, “On spectral simulation of fractional Brownian motion”, Probab. Engrg. Inform. Sci., 17 (2003), 417–434 | DOI | MR | Zbl
[3] A. B. Dieker, Simulation of fractional Brownian motion, Master's thesis, updated in 2004, Vrije Universiteit Amsterdam, 2002
[4] K. Dzhaparidze, J. van Zanten,, “A series expansion of fractional Brownian motion”, CWI. Probability, Networks and Algorithms [PNA], R 0216 (2002)
[5] Yu. Kozachenko, A. Olenko, O. Polosmak,, “Uniform convergence of wavelet expansions of Gaussian random processes”, Stochastic Analysis and Applications, 29:2 (2011), 169–184. | DOI | MR | Zbl
[6] Yu. Kozachenko, A. Pashko, “Accuracy of simulation of stochastic processes in norms of Orlicz spaces. I”, Theory Probab. Math. Stat., 58 (1999), 51–66 | MR
[7] Yu. Kozachenko, A. Pashko, “Accuracy of simulation of stochastic processes in norms of Orlicz spaces. II”, Theory Probab. Math. Stat., 59 (1999), 77–92 | MR
[8] Yu. Kozachenko, A. Pashko, “On the simulation of random fields. I”, Theory Probab. Math. Stat., 61 (2000), 61–74 | MR | Zbl
[9] Yu. Kozachenko, A. Pashko, “On the simulation of random fields. II”, Theory Probab. Math. Stat., 62 (2001), 51–63 | MR
[10] Yu. Kozachenko, A. Pashko,, Accuracy and Reliability of Simulation of Random Processes and Fields in Uniform Metrics, Kyiv, 2016, 216 pp. (Ukrainian)
[11] Yu. Kozachenko, A. Pashko, I. Rozora,, Simulation of random processes and fields, “Zadruga”, Kyiv, 2007 (Ukrainian)
[12] Y. Kozachenko, A. Pashko, O. Vasylyk, “Simulation of generalized fractional Brownian motion in $C([0,T])$”, Monte Carlo Methods and Applications, 24:3 (2018), 179–192 | DOI | MR | Zbl
[13] Yu. Kozachenko, O. Kamenshchikova, “Approximation of $SSub_\varphi(\Omega)$ stochastic processes in the space $L_p (T)$”, Theor. Probability and Math. Statist., 79 (2009), 83–88 | DOI | MR
[14] Yu. V. Kozachenko, O. O. Pogorilyak, I. V. Rozora, A. M. Tegza, Simulation of Stochastic Processes with Given Accuracy and Reliability, ISTE Press - Elsevier, 2016, 332 pp. | MR | Zbl
[15] Yu. Kozachenko, I. Rozora, “Accuracy and Reliability of models of stochastic processes of the space $Sub_\varphi(\Omega)$”, Theory of Probability and Mathematical Statistics, 71 (2005), 105–117 | DOI | MR
[16] Yu. Kozachenko,T. Sottinen, O. Vasylyk, “Simulation of weakly self-similar stationary increment $Sub_\varphi(\Omega)$-processes: a series expansion approach”, Methodology and computing in applied probability, 7 (2005), 379–400 | DOI | MR | Zbl
[17] Yu. Kozachenko, R. Yamnenko, O. Vasylyk,, $\varphi $-sub-Gaussian random process, Vydavnycho-Poligrafichnyi Tsentr “Kyivskyi Universytet”, Kyiv, 2008 (Ukrainian)
[18] A. Pashko,, “Estimation of Accuracy of Simulation of a Generalized Wiener Process”, Bulletin of Uzhgorod University. Series: Mathematics and Informatics, 25:1 (2014), 109–116 (Ukrainian)
[19] A. Pashko,, “Statistical Simulation of the generalized Wiener process”, Bulletin of Taras Shevchenko National University of Kyiv. Series Physics Mathematics, 2 (2014), 180–183 | Zbl
[20] S. Prigarin, Numerical Modeling of Random Processes and Fields, Inst. of Comp. Math. and Math. Geoph. Publ, Novosibirsk, 2005 | MR
[21] S. Prigarin, K. Hahn, G. Winkler, “Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion”, Siberian J. Num. Math., 2 (2008), 201–218 | Zbl
[22] S.M. Prigarin, P.V. Konstantinov,, “Spectral numerical models of fractional Brownian motion”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 279–295 | DOI | MR | Zbl