Simulation of fractional Brownian motion basing on its spectral representation
Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the model of a fractional Brownian motion (fBm) with parameter $\alpha\in(0,2)$, which approximates such process with given reliability $ 1- \delta$, $0\delta1$, and accuracy $\varepsilon > 0$ in the space $C([0,T])$ basing on a spectral representation of the fBm.
Keywords: Gaussian processes, fractional Brownian motion, spectral representation.
Mots-clés : simulation
@article{THSP_2018_23_1_a5,
     author = {A. O. Pashko and O. I. Vasylyk},
     title = {Simulation of fractional {Brownian} motion basing on its spectral representation},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/}
}
TY  - JOUR
AU  - A. O. Pashko
AU  - O. I. Vasylyk
TI  - Simulation of fractional Brownian motion basing on its spectral representation
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 73
EP  - 81
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/
LA  - en
ID  - THSP_2018_23_1_a5
ER  - 
%0 Journal Article
%A A. O. Pashko
%A O. I. Vasylyk
%T Simulation of fractional Brownian motion basing on its spectral representation
%J Teoriâ slučajnyh processov
%D 2018
%P 73-81
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/
%G en
%F THSP_2018_23_1_a5
A. O. Pashko; O. I. Vasylyk. Simulation of fractional Brownian motion basing on its spectral representation. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a5/

[1] J.-F. Coeurjolly,, “Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study”, Journal of Statistical Software, 5:1 (2000)

[2] A. B. Dieker, M. Mandjes, “On spectral simulation of fractional Brownian motion”, Probab. Engrg. Inform. Sci., 17 (2003), 417–434 | DOI | MR | Zbl

[3] A. B. Dieker, Simulation of fractional Brownian motion, Master's thesis, updated in 2004, Vrije Universiteit Amsterdam, 2002

[4] K. Dzhaparidze, J. van Zanten,, “A series expansion of fractional Brownian motion”, CWI. Probability, Networks and Algorithms [PNA], R 0216 (2002)

[5] Yu. Kozachenko, A. Olenko, O. Polosmak,, “Uniform convergence of wavelet expansions of Gaussian random processes”, Stochastic Analysis and Applications, 29:2 (2011), 169–184. | DOI | MR | Zbl

[6] Yu. Kozachenko, A. Pashko, “Accuracy of simulation of stochastic processes in norms of Orlicz spaces. I”, Theory Probab. Math. Stat., 58 (1999), 51–66 | MR

[7] Yu. Kozachenko, A. Pashko, “Accuracy of simulation of stochastic processes in norms of Orlicz spaces. II”, Theory Probab. Math. Stat., 59 (1999), 77–92 | MR

[8] Yu. Kozachenko, A. Pashko, “On the simulation of random fields. I”, Theory Probab. Math. Stat., 61 (2000), 61–74 | MR | Zbl

[9] Yu. Kozachenko, A. Pashko, “On the simulation of random fields. II”, Theory Probab. Math. Stat., 62 (2001), 51–63 | MR

[10] Yu. Kozachenko, A. Pashko,, Accuracy and Reliability of Simulation of Random Processes and Fields in Uniform Metrics, Kyiv, 2016, 216 pp. (Ukrainian)

[11] Yu. Kozachenko, A. Pashko, I. Rozora,, Simulation of random processes and fields, “Zadruga”, Kyiv, 2007 (Ukrainian)

[12] Y. Kozachenko, A. Pashko, O. Vasylyk, “Simulation of generalized fractional Brownian motion in $C([0,T])$”, Monte Carlo Methods and Applications, 24:3 (2018), 179–192 | DOI | MR | Zbl

[13] Yu. Kozachenko, O. Kamenshchikova, “Approximation of $SSub_\varphi(\Omega)$ stochastic processes in the space $L_p (T)$”, Theor. Probability and Math. Statist., 79 (2009), 83–88 | DOI | MR

[14] Yu. V. Kozachenko, O. O. Pogorilyak, I. V. Rozora, A. M. Tegza, Simulation of Stochastic Processes with Given Accuracy and Reliability, ISTE Press - Elsevier, 2016, 332 pp. | MR | Zbl

[15] Yu. Kozachenko, I. Rozora, “Accuracy and Reliability of models of stochastic processes of the space $Sub_\varphi(\Omega)$”, Theory of Probability and Mathematical Statistics, 71 (2005), 105–117 | DOI | MR

[16] Yu. Kozachenko,T. Sottinen, O. Vasylyk, “Simulation of weakly self-similar stationary increment $Sub_\varphi(\Omega)$-processes: a series expansion approach”, Methodology and computing in applied probability, 7 (2005), 379–400 | DOI | MR | Zbl

[17] Yu. Kozachenko, R. Yamnenko, O. Vasylyk,, $\varphi $-sub-Gaussian random process, Vydavnycho-Poligrafichnyi Tsentr “Kyivskyi Universytet”, Kyiv, 2008 (Ukrainian)

[18] A. Pashko,, “Estimation of Accuracy of Simulation of a Generalized Wiener Process”, Bulletin of Uzhgorod University. Series: Mathematics and Informatics, 25:1 (2014), 109–116 (Ukrainian)

[19] A. Pashko,, “Statistical Simulation of the generalized Wiener process”, Bulletin of Taras Shevchenko National University of Kyiv. Series Physics Mathematics, 2 (2014), 180–183 | Zbl

[20] S. Prigarin, Numerical Modeling of Random Processes and Fields, Inst. of Comp. Math. and Math. Geoph. Publ, Novosibirsk, 2005 | MR

[21] S. Prigarin, K. Hahn, G. Winkler, “Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion”, Siberian J. Num. Math., 2 (2008), 201–218 | Zbl

[22] S.M. Prigarin, P.V. Konstantinov,, “Spectral numerical models of fractional Brownian motion”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 279–295 | DOI | MR | Zbl