Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_1_a3, author = {Yasaman Maleki}, title = {Generalized {Likelihood} {Ratio} {Test} for {Detection} of {Multivariate} {DSI} {Processes}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {53--65}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/} }
Yasaman Maleki. Generalized Likelihood Ratio Test for Detection of Multivariate DSI Processes. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/
[1] M. Bartolozzi, S. Drozdz, D. B. Leieber, J. Speth, A. W. Thomas, “Self-similar log-periodic structures in Western stock markets from 2000”, Int. J. Mod. Phys. C., 16:9 (2005), 1347–1361 | DOI
[2] P. Borgnat, P. O. Amblard, P. Flandrin, “Scale invariances and Lamperti transformations for stochastic processes”, J. Phys. A., 38 (2005), 2081–2101 | DOI | MR | Zbl
[3] P. Borgnat, P. Flandrin, P. O. Amblard, “Stochastic discrete scale invariance”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI
[4] K. Burnecki, M. Maejima, A. Weron, “The Lamperti transformation for self-similar processes”, Yokohama Math. J., 44 (1997), 25–42 | MR | Zbl
[5] P. Flandrin, P. Gonalvs,, “From Wavelets to time-scale energy distributions. Recent advances in wavelet analysis”, Wavelet Anal. Appl., v. 3, Academic Press, Boston, MA, 1994, 309–334 | MR | Zbl
[6] P. Goncalves, P. Flandrin, “Bilinear time scale analysis applied to local scaling exponent estimation”, Progress in Wavelet Analysis and Applications, eds. Y. Meyer and S. Roques, Toulouse (France), 1992, 271–276
[7] P. Goncalves, P. Abry, “Multiple-window wavelet transform and local scaling exponent estimation”, IEEE Int. Conf. on Acoust. Speech and Sig. Proc. Munich (Germany), 1997
[8] H. L. Hurd, A. G. Miamee, Periodically Correlated Random Sequences: Spectral Theory and Practice, John Wiley, 2007 | MR | Zbl
[9] J. T. Kent, A. T. A. Wood, “Estimating the fractal dimension of a locally self-similar Gaussian process by using increments”, J. Roy. Statist. Soc. Ser. B., 59:3 (1997), 579–599 | MR
[10] N. Modarresi, S. Rezakhah,, “Spectral Analysis of Multi-dimensional Self-similar Markov Processes”, article id: 125004, J. Phys. A-Math. Theor., 43:12 (2009) | DOI | MR
[11] N. Modarresi, S. Rezakhah, “A New Structure for Analyzing Discrete Scale Invariant Processes: Covariance and Spectra”, J. Stat. Phys., 153:1 (2013), 162–176 | DOI | MR | Zbl
[12] N. Modarresi, S. Rezakhah, Characterization of discrete time scale invariant Markov process, 2014, arXiv: 0905.3959 [math.PR] | MR
[13] N. Modarresi, S. Rezakhah, Discrete Time Scale Invariant Markov Processes, 2009, arXiv: 0905.3959 [math.PR]
[14] S. Rezakhah, Y. Maleki, “Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra”, J. Stat. Phys., 164:2 (2016), 439–448 | DOI | MR
[15] D. Sornette, “Discrete scale invariance and complex dimensions”, Phys. Rept., 297:5 (1998), 239–270 | DOI | MR
[16] A. Johansen, D. Sornette, O. Ledoit, “Predicting Financial Crashes using discrete scale invariance”, J. Risk, 1:4 (1999), 5–32 | DOI
[17] D. Ramirez, G. Vazquez-Vilar, R. Lopez-Valcarce, J. Via, I. Santamaria, “Detection of rank-$P$ signals in cognitive radio networks with uncalibrated multiple antennas”, IEEE Trans. Signal Process, 59:8 (2011), 3764–3774 | DOI | MR | Zbl
[18] D. Ramirez, P. J. Schreier, J. Via, I. Santamaria, L. L. Scharf, “Detection of Multivariate Cyclostationarity”, IEEE Trans. Signal Process, 63:20 (2015), 5395–5408 | DOI | MR | Zbl
[19] R. M. Gray, “Toeplitz and circulant matrices: A review”, Found. Trends Commun. Inf. Theory, 2:3 (2006), 155–219 | DOI
[20] J. Gutierrez-Gutierrez, P. M. Crespo, “Asymptotically equivalent sequences of matrices and Hermitian block Toeplitz matrices with continuous symbols: Applications to MIMO systems”, IEEE Trans. Inf. Theory., 54:12 (2008), 5671–5680 | DOI | MR | Zbl
[21] J. R. Magnus, H. Neudecker, “The commutation matrix: Some properties and applications”, Ann. Statist., 7:2 (1979), 381–394 | DOI | MR | Zbl
[22] J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series”, Math. Comput., 19:90 (1965), 297–301 | DOI | MR | Zbl
[23] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, Time Series Analysis, Norwood, MA, USA, Addison-Wesley, 1991 | MR