Generalized Likelihood Ratio Test for Detection of Multivariate DSI Processes
Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides a new method in detecting multivariate discrete scale invariant (DSI) processes using an asymptotic generalized likelihood ratio test (GLRT). We consider two hypothesis tests: 1) Is a multivariate process, DSI or is it self-similar? 2) Is a multivariate process, DSI or is it nonstationary?. Then, using the asymptotic GLRT, the DSI behaviour can be detected. In this method, by imposing some flexible sampling scheme, we provide some discretization of continuous time discrete scale invariant (DSI) processes. Then, the relationship between a discrete-time DSI process and a corresponding multidimensional self-similar process, enables us to formulate the problem as a test for covariance structure of the processes. For DSI and self-similar processes, the covariance matrices are as a product of scale matrices to a block-Toeplitz matrix, in which there is no a closed form of maximum likelihood for such matrices. So, by considering the asymptotic case, where the block-Toeplitz matrix converges to a block-circulant matrix, the asymptotic GLRT is derived. To clarify the proposed method, an example as a multivariate simple Brownian motion is presented and its simulations are provided. Also the performance of the method is studied on the S$\$P500 and Daw Jones indices for some special periods.
Keywords: Multivariate Discrete scale invariant processes, generalized likelihood ratio test, multivariate simple Brownian motion.
@article{THSP_2018_23_1_a3,
     author = {Yasaman Maleki},
     title = {Generalized {Likelihood} {Ratio} {Test} for {Detection} of {Multivariate} {DSI} {Processes}},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/}
}
TY  - JOUR
AU  - Yasaman Maleki
TI  - Generalized Likelihood Ratio Test for Detection of Multivariate DSI Processes
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 53
EP  - 65
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/
LA  - en
ID  - THSP_2018_23_1_a3
ER  - 
%0 Journal Article
%A Yasaman Maleki
%T Generalized Likelihood Ratio Test for Detection of Multivariate DSI Processes
%J Teoriâ slučajnyh processov
%D 2018
%P 53-65
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/
%G en
%F THSP_2018_23_1_a3
Yasaman Maleki. Generalized Likelihood Ratio Test for Detection of Multivariate DSI Processes. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a3/

[1] M. Bartolozzi, S. Drozdz, D. B. Leieber, J. Speth, A. W. Thomas, “Self-similar log-periodic structures in Western stock markets from 2000”, Int. J. Mod. Phys. C., 16:9 (2005), 1347–1361 | DOI

[2] P. Borgnat, P. O. Amblard, P. Flandrin, “Scale invariances and Lamperti transformations for stochastic processes”, J. Phys. A., 38 (2005), 2081–2101 | DOI | MR | Zbl

[3] P. Borgnat, P. Flandrin, P. O. Amblard, “Stochastic discrete scale invariance”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI

[4] K. Burnecki, M. Maejima, A. Weron, “The Lamperti transformation for self-similar processes”, Yokohama Math. J., 44 (1997), 25–42 | MR | Zbl

[5] P. Flandrin, P. Gonalvs,, “From Wavelets to time-scale energy distributions. Recent advances in wavelet analysis”, Wavelet Anal. Appl., v. 3, Academic Press, Boston, MA, 1994, 309–334 | MR | Zbl

[6] P. Goncalves, P. Flandrin, “Bilinear time scale analysis applied to local scaling exponent estimation”, Progress in Wavelet Analysis and Applications, eds. Y. Meyer and S. Roques, Toulouse (France), 1992, 271–276

[7] P. Goncalves, P. Abry, “Multiple-window wavelet transform and local scaling exponent estimation”, IEEE Int. Conf. on Acoust. Speech and Sig. Proc. Munich (Germany), 1997

[8] H. L. Hurd, A. G. Miamee, Periodically Correlated Random Sequences: Spectral Theory and Practice, John Wiley, 2007 | MR | Zbl

[9] J. T. Kent, A. T. A. Wood, “Estimating the fractal dimension of a locally self-similar Gaussian process by using increments”, J. Roy. Statist. Soc. Ser. B., 59:3 (1997), 579–599 | MR

[10] N. Modarresi, S. Rezakhah,, “Spectral Analysis of Multi-dimensional Self-similar Markov Processes”, article id: 125004, J. Phys. A-Math. Theor., 43:12 (2009) | DOI | MR

[11] N. Modarresi, S. Rezakhah, “A New Structure for Analyzing Discrete Scale Invariant Processes: Covariance and Spectra”, J. Stat. Phys., 153:1 (2013), 162–176 | DOI | MR | Zbl

[12] N. Modarresi, S. Rezakhah, Characterization of discrete time scale invariant Markov process, 2014, arXiv: 0905.3959 [math.PR] | MR

[13] N. Modarresi, S. Rezakhah, Discrete Time Scale Invariant Markov Processes, 2009, arXiv: 0905.3959 [math.PR]

[14] S. Rezakhah, Y. Maleki, “Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra”, J. Stat. Phys., 164:2 (2016), 439–448 | DOI | MR

[15] D. Sornette, “Discrete scale invariance and complex dimensions”, Phys. Rept., 297:5 (1998), 239–270 | DOI | MR

[16] A. Johansen, D. Sornette, O. Ledoit, “Predicting Financial Crashes using discrete scale invariance”, J. Risk, 1:4 (1999), 5–32 | DOI

[17] D. Ramirez, G. Vazquez-Vilar, R. Lopez-Valcarce, J. Via, I. Santamaria, “Detection of rank-$P$ signals in cognitive radio networks with uncalibrated multiple antennas”, IEEE Trans. Signal Process, 59:8 (2011), 3764–3774 | DOI | MR | Zbl

[18] D. Ramirez, P. J. Schreier, J. Via, I. Santamaria, L. L. Scharf, “Detection of Multivariate Cyclostationarity”, IEEE Trans. Signal Process, 63:20 (2015), 5395–5408 | DOI | MR | Zbl

[19] R. M. Gray, “Toeplitz and circulant matrices: A review”, Found. Trends Commun. Inf. Theory, 2:3 (2006), 155–219 | DOI

[20] J. Gutierrez-Gutierrez, P. M. Crespo, “Asymptotically equivalent sequences of matrices and Hermitian block Toeplitz matrices with continuous symbols: Applications to MIMO systems”, IEEE Trans. Inf. Theory., 54:12 (2008), 5671–5680 | DOI | MR | Zbl

[21] J. R. Magnus, H. Neudecker, “The commutation matrix: Some properties and applications”, Ann. Statist., 7:2 (1979), 381–394 | DOI | MR | Zbl

[22] J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series”, Math. Comput., 19:90 (1965), 297–301 | DOI | MR | Zbl

[23] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, Time Series Analysis, Norwood, MA, USA, Addison-Wesley, 1991 | MR