Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_1_a2, author = {Arturo Kohatsu-Higa and Nicolas Vayatis and Kazuhiro Yasude}, title = {Tuning of a {Bayesian} estimator under discrete time observations and unknown transition density}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {18--52}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a2/} }
TY - JOUR AU - Arturo Kohatsu-Higa AU - Nicolas Vayatis AU - Kazuhiro Yasude TI - Tuning of a Bayesian estimator under discrete time observations and unknown transition density JO - Teoriâ slučajnyh processov PY - 2018 SP - 18 EP - 52 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a2/ LA - en ID - THSP_2018_23_1_a2 ER -
%0 Journal Article %A Arturo Kohatsu-Higa %A Nicolas Vayatis %A Kazuhiro Yasude %T Tuning of a Bayesian estimator under discrete time observations and unknown transition density %J Teoriâ slučajnyh processov %D 2018 %P 18-52 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a2/ %G en %F THSP_2018_23_1_a2
Arturo Kohatsu-Higa; Nicolas Vayatis; Kazuhiro Yasude. Tuning of a Bayesian estimator under discrete time observations and unknown transition density. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 18-52. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a2/
[1] V. Bally, D. Talay, “The law of the Euler scheme for stochastic differential equations II. Convergence rate of the density”, Monte Carlo Methods Appl., 2:2 (1996), 93–128 | DOI | MR | Zbl
[2] A. Beskos, O. Papaspiliopoulos, G. O. Roberts, P. Fearnhead, “Exact and Computationally Efficient Likelihood-based Estimation for Discretely Observed Diffusion Processes”, J. R. Statist. Soc. B, Part 3, 68 (2006), 333–382 | DOI | MR | Zbl
[3] P. Billingsley, Probability and measure, John Wiley Sons, 1979 | MR
[4] P. Billingsley, Convergence of Probability Measures, Second Edition, John Wiley Sons, 1999 | MR
[5] D. Bosq, Non-parametric Statistics for Stochastic Processes. Estimation and Prediction, second edition, Springer–Verlag, 1998 | MR
[6] J. A. Cano, M. Kessler, D. Salmeron, “Approximation of the posterior density for diffusion processes”, Statist. Probab. Lett., 76:1 (2006), 39–44 | DOI | MR | Zbl
[7] G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Springer, 2006 | MR | Zbl
[8] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Lecture Notes Series, London Mathematical Society, 1996 | MR | Zbl
[9] H. Dehling, “Limit theorems for sums of weakly dependent Banach space valued random variables”, Z. Wahrsch. Verw. Gebiete, 63 (1983), 393–432 | DOI | MR | Zbl
[10] P. Del Moral, J. Jacod, P. Protter, “The Monte-Carlo method for filtering with discrete-time observations”, Probab. Theory and Related Fields, 120 (2001), 346–368 | DOI | MR | Zbl
[11] P. P. B. Eggermont, V. N. LaRiccia, Maximum Penalized Likelihood Estimation, v. I, Density Estimation, Springer-Verlag, New York, 2001 | MR | Zbl
[12] S. N. Ethier, T. G. Kurtz, Markov processes; Characterization and convergence, Wiley Series in Probability and Mathematical Statistics, Probability and Mathematical Statistics, John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[13] S. Gál, L. Gál, “The discrepancy of the sequence $\{(2^nx)\}$”, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, Seres A, Indagationes Mathematicae, 67 (1964), 129–143 | Zbl
[14] J. Guyon, “Euler scheme and tempered distributions”, Stochastic Process. Appl., 116:6 (2006), 877–904 | DOI | MR | Zbl
[15] I. A. Ibragimov, Yu. V. Linnik., Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971 | MR | Zbl
[16] S. Itô, H. P. McKean, Diffusion processes and their Sample Paths, Springer-Verlag, 1974 | MR | Zbl
[17] A. Kohatsu-Higa, N. Vayatis, K. Yasuda, “Strong consistency of Bayesian estimator for the Ornstein-Uhlenbeck process”, Stochastic Analysis with Financial Applications, Progress in Probability, 65, 2011, 145–167 | Zbl
[18] A. Kohatsu-Higa, K. Yasuda, “An Ornstein-Uhlenbeck type process which satisfies sufficient conditions for a simulation based filtering procedure”, Malliavin Calculus and Stochastic Analysis, Springer Proceedings in Mathematics Statistics book series (PROMS), 34, 2013, 173–193 | DOI | MR | Zbl
[19] Kuelbs, J., Philipp, Walter, “Almost sure invariance principles for partial sums of mixing {$B$}-valued random variables”, Ann. Probab., 8 (1980), 1003–1036 | DOI | MR | Zbl
[20] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, 1979 | MR | Zbl
[21] D. Talay, “Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure and discretization by the implicit Euler scheme”, Markov Processes and Related Fields, 8 (2002), 163–198 | MR | Zbl
[22] R. Yokoyama, “Moment Bounds for Starionary Mixing Sequences”, Z. Wahrsch. Verw. Gebiete, 52 (1980), 45–57 | DOI | MR | Zbl