Optimal estimation of a signal perturbed by a mixed fractional Brownian motion
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 62-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of optimal estimation of the vector parameter $\theta$ of the drift term in a mixed fractional Brownian motion. We obtain the maximum likelihood estimator as well as the Bayesian estimator when the prior distribution is Gaussian.
Keywords: Mixed fractional Brownian motion; Maximum likelihood estimation; Bayes estimation.
@article{THSP_2017_22_2_a5,
     author = {B.L.S. Prakasa Rao},
     title = {Optimal estimation of a signal perturbed by a mixed fractional {Brownian} motion},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {62--68},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a5/}
}
TY  - JOUR
AU  - B.L.S. Prakasa Rao
TI  - Optimal estimation of a signal perturbed by a mixed fractional Brownian motion
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 62
EP  - 68
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a5/
LA  - en
ID  - THSP_2017_22_2_a5
ER  - 
%0 Journal Article
%A B.L.S. Prakasa Rao
%T Optimal estimation of a signal perturbed by a mixed fractional Brownian motion
%J Teoriâ slučajnyh processov
%D 2017
%P 62-68
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a5/
%G en
%F THSP_2017_22_2_a5
B.L.S. Prakasa Rao. Optimal estimation of a signal perturbed by a mixed fractional Brownian motion. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 62-68. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a5/