Negative binomial construction of random discrete distributions on the infinite simplex
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Poisson-Kingman distributions, $\mathrm{PK}(\rho)$, on the infinite simplex, can be constructed from a Poisson point process having intensity density $\rho$ or by taking the ranked jumps up till a specified time of a subordinator with Lévy density $\rho$, as proportions of the subordinator. As a natural extension, we replace the Poisson point process with a negative binomial point process having parameter $r>0$ and Lévy density $\rho$, thereby defining a new class $\mathrm{PK}^{(r)}(\rho)$ of distributions on the infinite simplex. The new class contains the two-parameter generalisation $\mathrm{PD}(\alpha, \theta)$ of [13] when $\theta>0$. It also contains a class of distributions derived from the trimmed stable subordinator. We derive properties of the new distributions, with particular reference to the two most well-known $\mathrm{PK}$ distributions: the Poisson–Dirichlet distribution $\mathrm{PK}(\rho_\theta)$ generated by a Gamma process with Lévy density $\rho_\theta(x) = \theta e^{-x}/x$, $x>0$, $\theta > 0$, and the random discrete distribution, $\mathrm{PD}(\alpha,0)$, derived from an $\alpha$-stable subordinator.
Keywords: stick-breaking and size-biased constructions, trimmed $\alpha$-stable subordinator, mixing distribution.
Mots-clés : Poisson–Kingman distribution, Poisson–Dirichlet distribution
@article{THSP_2017_22_2_a3,
     author = {Yuguang F. Ipsen and Ross A. Maller},
     title = {Negative binomial construction of random discrete distributions on the infinite simplex},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/}
}
TY  - JOUR
AU  - Yuguang F. Ipsen
AU  - Ross A. Maller
TI  - Negative binomial construction of random discrete distributions on the infinite simplex
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 34
EP  - 46
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/
LA  - en
ID  - THSP_2017_22_2_a3
ER  - 
%0 Journal Article
%A Yuguang F. Ipsen
%A Ross A. Maller
%T Negative binomial construction of random discrete distributions on the infinite simplex
%J Teoriâ slučajnyh processov
%D 2017
%P 34-46
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/
%G en
%F THSP_2017_22_2_a3
Yuguang F. Ipsen; Ross A. Maller. Negative binomial construction of random discrete distributions on the infinite simplex. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 34-46. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/

[1] M. A. Carlton, Applications of the two-parameter poisson-dirichlet distribution, Unpublished Ph.D. thesis, Department of Statistics, University of California, Los Angeles, 1999 | MR

[2] P. Donnelly, “Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles”, Theor Popul Biol., 30 (1986), 271–288 | DOI | MR | Zbl

[3] W. J. Ewens, “The sampling theory of selectively neutral alleles”, Theoret. Popul. Biol., 3 (1972), 87–112 | DOI | MR | Zbl

[4] S. Goldwater, T. L. Griffiths, M. Johnson, “Producing power-law distributions and damping word frequencies with two-stage language models”, J. Mach. Learn. Res., 12 (2011), 2335–2382 | MR | Zbl

[5] Gérard Gregoire, “Negative binomial distributions for point processes”, Stochastic Process. Appl., 16:2 (1984), 179–188 | DOI | MR | Zbl

[6] Yuguang F. Ipsen, Ross A. Maller, “Generalised Poisson-Dirichlet distributions and the negative binomial point process”, arXiv: (2017). 1611.09980

[7] H. Ishwaran, L. F. James, “Gibbs sampling methods for stick-breaking priors”, J. Amer. Statist. Ass., 96 (2001), 161–173 | DOI | MR | Zbl

[8] L. F. James, P. Orbanz, Y. W. Teh, “Scaled subordinators and generalizations of the Indian buffet process”, arXiv: (2015). 1510.073

[9] J. F. C. Kingman, “Random discrete distributions”, J. R. Stat. Soc. Series B Stat. Methodol., 37:1 (1975), 1–22 | MR | Zbl

[10] K. L. Lim, W. Buntine, C. Chen, L. Du, “Nonparametric Bayesian topic modelling with the hierarchical Pitman-Yor processes”, International J. of Approximate Reasoning, 78 (2016), 172–191 | DOI | MR | Zbl

[11] Mihael Perman, Jim Pitman, Marc Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Related Fields, 92:1 (1992), 21–39 | DOI | MR | Zbl

[12] Jim Pitman, “{Poisson-Kingman} partitions”, Lect. Notes Monogr. Ser., 40 (2003), 1–34 | MR

[13] Jim Pitman, Marc Yor, “The two-parameter {Poisson–Dirichlet} distribution derived from a stable subordinator”, Annals of Probability, 25:2 (1997), 855–900 | DOI | MR | Zbl

[14] Sidney I. Resnick, Extreme values, regular variation, and point processes, Springer-Verlag, 1987 | MR | Zbl

[15] Sergey Sosnovskiy, “On financial applications of the two-parameter Poisson-Dirichlet distribution”, arXiv: (2015). 1501.01954v3