Negative binomial construction of random discrete distributions on the infinite simplex
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 34-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The Poisson-Kingman distributions, $\mathrm{PK}(\rho)$, on the infinite simplex, can be constructed from a Poisson point process having intensity density $\rho$ or by taking the ranked jumps up till a specified time of a subordinator with Lévy density $\rho$, as proportions of the subordinator. As a natural extension, we replace the Poisson point process with a negative binomial point process having parameter $r>0$ and Lévy density $\rho$, thereby defining a new class $\mathrm{PK}^{(r)}(\rho)$ of distributions on the infinite simplex. The new class contains the two-parameter generalisation $\mathrm{PD}(\alpha, \theta)$ of [13] when $\theta>0$. It also contains a class of distributions derived from the trimmed stable subordinator. We derive properties of the new distributions, with particular reference to the two most well-known $\mathrm{PK}$ distributions: the Poisson–Dirichlet distribution $\mathrm{PK}(\rho_\theta)$ generated by a Gamma process with Lévy density $\rho_\theta(x) = \theta e^{-x}/x$, $x>0$, $\theta > 0$, and the random discrete distribution, $\mathrm{PD}(\alpha,0)$, derived from an $\alpha$-stable subordinator.
Keywords: stick-breaking and size-biased constructions, trimmed $\alpha$-stable subordinator, mixing distribution.
Mots-clés : Poisson–Kingman distribution, Poisson–Dirichlet distribution
@article{THSP_2017_22_2_a3,
     author = {Yuguang F. Ipsen and Ross A. Maller},
     title = {Negative binomial construction of random discrete distributions on the infinite simplex},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/}
}
TY  - JOUR
AU  - Yuguang F. Ipsen
AU  - Ross A. Maller
TI  - Negative binomial construction of random discrete distributions on the infinite simplex
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 34
EP  - 46
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/
LA  - en
ID  - THSP_2017_22_2_a3
ER  - 
%0 Journal Article
%A Yuguang F. Ipsen
%A Ross A. Maller
%T Negative binomial construction of random discrete distributions on the infinite simplex
%J Teoriâ slučajnyh processov
%D 2017
%P 34-46
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/
%G en
%F THSP_2017_22_2_a3
Yuguang F. Ipsen; Ross A. Maller. Negative binomial construction of random discrete distributions on the infinite simplex. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 34-46. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a3/