Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_2_a1, author = {A. A. Dorogovtsev and Ia. A. Korenovska and E. V. Glinyanaya}, title = {On some random integral operators generated by an {Arratia} flow}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {8--18}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a1/} }
TY - JOUR AU - A. A. Dorogovtsev AU - Ia. A. Korenovska AU - E. V. Glinyanaya TI - On some random integral operators generated by an Arratia flow JO - Teoriâ slučajnyh processov PY - 2017 SP - 8 EP - 18 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a1/ LA - en ID - THSP_2017_22_2_a1 ER -
A. A. Dorogovtsev; Ia. A. Korenovska; E. V. Glinyanaya. On some random integral operators generated by an Arratia flow. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 8-18. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a1/
[1] R. Arratia, Brownian motion on the line, PhD dissertation, Univ. Wisconsin, 1979 | MR
[2] A. A. Dorogovtsev, “Krylov-Veretennikov expansion for coalescing stochastic flows”, Commun. Stoch. Anal., 6:3 (2012), 421–435 | MR | Zbl
[3] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Institute of Mathematics of the NAS of Ukraine, Kiev, 2007 (Russian) | MR | Zbl
[4] A. A. Dorogovtsev, “Some remarks about Brownian flow with coalescence”, Ukr. Math. J., 57:10 (2005), 1327–1333 | DOI | MR | Zbl
[5] A. A. Dorogovtsev, Stochastic analysis and random maps in Hilbert space, VSP, Utrecht, 1994 | MR | Zbl
[6] A. A. Dorogovtsev, Ia. A. Korenovska, “Essential Sets for Random Operators Constructed from an Arratia Flow”, Communications on Stochastic Analysis, 11:3 (2017), 301–312 | DOI | MR
[7] A. A. Dorogovtsev, Ia. A. Korenovska, “Some random integral operators related to a point processes”, Theory of Stochastic Processes, 22 (38):1 (2017), 16–21 | MR | Zbl
[8] V. V. Fomichov, “The level-crossing intensity for the density of the image of the Lebesgue measure under the action of a Brownian stochastic flow”, Ukr. Math. J., 69:6 (2017), 803–822 (Russian) | MR
[9] L. R. G. Fontes, M. Isopi, C. M. Newman, K. Ravishankar, “The Brownian web”, Proc. Nat. Acad. Sciences, 99 (2002), 15888–15893 | DOI | MR | Zbl
[10] E. V. Glinyanaya, “Spatial Ergodicity of the Harris Flows”, Communications on Stochastic Analysis, 11:2 (2017), 223–231 | DOI | MR
[11] Ya. A. Korenovskaya, “Properties of Strong Random Operators Generated by the Arratia Flow”, Ukrainian Mathematical Journal, 69:2 (2017), 186–204 | DOI | MR
[12] G. Last, M. Penrose, Lectures on the Poisson Processes, Cambridge University Press, 2017 (to appear) | MR
[13] M. A. Lifshits, Gaussian random functions, Kluwer, Dordrecht, 1995 | MR | Zbl
[14] Y. Peres, P. Mörters, Brownian motion, Cambridge University Press, 2010 | MR | Zbl
[15] A. V. Skorokhod, Random linear operators, D.Reidel Publishing Company, Dordrecht, Holland, 1983 | MR