On convergence rate for Erlang–Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927–06.04.2001)
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 89-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Polynomial convergence rate to stationarity is shown for extended Erlang–Sevastyanov's model with variable intensities of service and arrivals.
Keywords: Erlang-Sevastyanov systems; Ergodicity; Lyapunov functions; Coupling; Convergence rates.
@article{THSP_2017_22_1_a8,
     author = {A. Yu. Veretennikov},
     title = {On convergence rate for {Erlang{\textendash}Sevastyanov} type models with infinitely many servers. {In} memory and to the 90th anniversary of {A.D.} {Solovyev} (06.09.1927{\textendash}06.04.2001)},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {89--103},
     year = {2017},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
TI  - On convergence rate for Erlang–Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927–06.04.2001)
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 89
EP  - 103
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/
LA  - en
ID  - THSP_2017_22_1_a8
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%T On convergence rate for Erlang–Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927–06.04.2001)
%J Teoriâ slučajnyh processov
%D 2017
%P 89-103
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/
%G en
%F THSP_2017_22_1_a8
A. Yu. Veretennikov. On convergence rate for Erlang–Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927–06.04.2001). Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/

[1] S. Asmussen, Applied Probability and Queues, John Wiley and Sons, Chichester et al., 1987 | MR | Zbl

[2] A. A. Borovkov, Stochastic processes in queueing theory, Springer, Berlin, 1976 | MR | Zbl

[3] O. A. Butkovsky, A. Yu. Veretennikov, “On asymptotics for Vaserstein coupling of Markov chains”, Stochastic Processes and their Applications, 123:9 (2013), 3518–3541 | DOI | MR | Zbl

[4] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Birkhauser, Boston, 1989 | MR

[5] M. H. A. Davis, “Piecewise–Deterministic Markov Processes: A General Class of Non–Diffusion Stochastic Models”, J. Royal Stat. Soc. Ser. B (Methodological), 46:3 (1984), 353–388 | MR | Zbl

[6] E. B. Dynkin, Markov processes, Springer, Berlin et al., 1965 | MR | Zbl

[7] A. K. Erlang, “Solution of some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges”, Elektrotkeknikeren, 13 (1917), 5–13

[8] R. Fortet, Calcul des probabilités, CNRS, Paris, 1950 | MR

[9] V. V. Kalashnikov, “The property of $\gamma$–reflexivity for Markov sequences”, Sov. Math. Dokl., 14 (1973), 1869–1873 | MR | Zbl

[10] V. V. Kalashnikov, “Analysis of stability in queuing theory by a trial functions method”, Theory of Probability and its Applications, 22:1 (1977), 86–103 | DOI | MR | Zbl

[11] S. Karlin, H. M. Taylor, A First Course in Stochastic Processes, 2nd edition, Academic Press, New York et al., 2012 | MR

[12] M. Kelbert, A. Veretennikov, “On the estimation of mixing coefficients for a multiphase service system”, Queueing Systems, 25 (1997), 325–337 | DOI | MR | Zbl

[13] D. König, K. Matthes, K. Nawrotzki, Verallgemeinerung der Erlangschen und Engsetschen Formeln. (Eine Methode in der Bedienungstheorie), Akademie Verlag, Berlin, 1967 | MR

[14] R. Sh. Liptser, A. N. Shiryaev, Theory of Martingales, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl

[15] K. Matthes, “Zür Theorie der Bedienungsprozesse”, 3rd Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes, Publ. House of the Czechoslovak Acad. of Sci., Liblice, Czechoslovakia, 1962, 513–528 | MR

[16] M. V. Menshikov, S. Yu. Popov, “Exact Power Estimates For Countable Markov Chains”, Markov Processes Relat. Fields, 1 (1995), 57–78 | MR | Zbl

[17] B. A. Sevastyanov, “An Ergodic Theorem for Markov Processes and Its Application to Telephone Systems with Refusals”, Theory Probab. Appl., 2:1 (1957), 104–112 | DOI | MR

[18] B. A. Sevastyanov, “Erlang formulae in telephone systems with arbitrary distribution function of call”, Proc. III–rd All–Union Mathematical Congress (Moscow, June–July 1956), v. 4, Acad. Sci. USSR Publ. House, 1959, 121–135 (Russian) | MR

[19] R. Schassberger, “Insensitivity of Steady–State Distributions of Generalized Semi–Markov Processes. I; II”, Ann. Probab., 5:1 (1977), 87–99 ; 6:1 (1978), 85–93 | DOI | MR | Zbl | DOI | MR | Zbl

[20] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000 | MR | Zbl

[21] A. Yu. Veretennikov, “The ergodicity of service systems with an infinite number of servomechanisms”, Math. Notes, 22:4 (1977), 804–808 | DOI | MR

[22] A. Yu. Veretennikov, “On the rate of convergence to the stationary distribution in the single–server queuing systems”, Automation and Remote Control, 74:10 (2013), 1620–1629 | DOI | MR | Zbl

[23] A. Yu. Veretennikov, “On the rate of convergence for infinite server Erlang–Sevastyanov's problem”, Queueing Systems, 76:2 (2014), 181–203 | DOI | MR | Zbl

[24] A. Yu. Veretennikov, On convergence rate for Erlang–Sevastyanov type models with infinitely many servers, arXiv: abs/1412.3849

[25] A. Yu. Veretennikov, “On recurrence and availability factor for single–server system with general arrivals”, Reliability, Reliability: Theory Applications, 11:3(42) (2016), 49–58

[26] A. Yu. Veretennikov, G. A. Zverkina, “Simple Proof of Dynkin's Formula for Single–Server Systems and Polynomial Convergence Rates”, Markov Processes and Related Fields, 20:3 (2014), 479–504 | MR | Zbl