Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a8, author = {A. Yu. Veretennikov}, title = {On convergence rate for {Erlang--Sevastyanov} type models with infinitely many servers. {In} memory and to the 90th anniversary of {A.D.} {Solovyev} (06.09.1927--06.04.2001)}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {89--103}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/} }
TY - JOUR AU - A. Yu. Veretennikov TI - On convergence rate for Erlang--Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927--06.04.2001) JO - Teoriâ slučajnyh processov PY - 2017 SP - 89 EP - 103 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/ LA - en ID - THSP_2017_22_1_a8 ER -
%0 Journal Article %A A. Yu. Veretennikov %T On convergence rate for Erlang--Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927--06.04.2001) %J Teoriâ slučajnyh processov %D 2017 %P 89-103 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/ %G en %F THSP_2017_22_1_a8
A. Yu. Veretennikov. On convergence rate for Erlang--Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927--06.04.2001). Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a8/
[1] S. Asmussen, Applied Probability and Queues, John Wiley and Sons, Chichester et al., 1987 | MR | Zbl
[2] A. A. Borovkov, Stochastic processes in queueing theory, Springer, Berlin, 1976 | MR | Zbl
[3] O. A. Butkovsky, A. Yu. Veretennikov, “On asymptotics for Vaserstein coupling of Markov chains”, Stochastic Processes and their Applications, 123:9 (2013), 3518–3541 | DOI | MR | Zbl
[4] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Birkhauser, Boston, 1989 | MR
[5] M. H. A. Davis, “Piecewise–Deterministic Markov Processes: A General Class of Non–Diffusion Stochastic Models”, J. Royal Stat. Soc. Ser. B (Methodological), 46:3 (1984), 353–388 | MR | Zbl
[6] E. B. Dynkin, Markov processes, Springer, Berlin et al., 1965 | MR | Zbl
[7] A. K. Erlang, “Solution of some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges”, Elektrotkeknikeren, 13 (1917), 5–13
[8] R. Fortet, Calcul des probabilités, CNRS, Paris, 1950 | MR
[9] V. V. Kalashnikov, “The property of $\gamma$–reflexivity for Markov sequences”, Sov. Math. Dokl., 14 (1973), 1869–1873 | MR | Zbl
[10] V. V. Kalashnikov, “Analysis of stability in queuing theory by a trial functions method”, Theory of Probability and its Applications, 22:1 (1977), 86–103 | DOI | MR | Zbl
[11] S. Karlin, H. M. Taylor, A First Course in Stochastic Processes, 2nd edition, Academic Press, New York et al., 2012 | MR
[12] M. Kelbert, A. Veretennikov, “On the estimation of mixing coefficients for a multiphase service system”, Queueing Systems, 25 (1997), 325–337 | DOI | MR | Zbl
[13] D. König, K. Matthes, K. Nawrotzki, Verallgemeinerung der Erlangschen und Engsetschen Formeln. (Eine Methode in der Bedienungstheorie), Akademie Verlag, Berlin, 1967 | MR
[14] R. Sh. Liptser, A. N. Shiryaev, Theory of Martingales, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl
[15] K. Matthes, “Zür Theorie der Bedienungsprozesse”, 3rd Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes, Publ. House of the Czechoslovak Acad. of Sci., Liblice, Czechoslovakia, 1962, 513–528 | MR
[16] M. V. Menshikov, S. Yu. Popov, “Exact Power Estimates For Countable Markov Chains”, Markov Processes Relat. Fields, 1 (1995), 57–78 | MR | Zbl
[17] B. A. Sevastyanov, “An Ergodic Theorem for Markov Processes and Its Application to Telephone Systems with Refusals”, Theory Probab. Appl., 2:1 (1957), 104–112 | DOI | MR
[18] B. A. Sevastyanov, “Erlang formulae in telephone systems with arbitrary distribution function of call”, Proc. III–rd All–Union Mathematical Congress (Moscow, June–July 1956), v. 4, Acad. Sci. USSR Publ. House, 1959, 121–135 (Russian) | MR
[19] R. Schassberger, “Insensitivity of Steady–State Distributions of Generalized Semi–Markov Processes. I; II”, Ann. Probab., 5:1 (1977), 87–99 ; 6:1 (1978), 85–93 | DOI | MR | Zbl | DOI | MR | Zbl
[20] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000 | MR | Zbl
[21] A. Yu. Veretennikov, “The ergodicity of service systems with an infinite number of servomechanisms”, Math. Notes, 22:4 (1977), 804–808 | DOI | MR
[22] A. Yu. Veretennikov, “On the rate of convergence to the stationary distribution in the single–server queuing systems”, Automation and Remote Control, 74:10 (2013), 1620–1629 | DOI | MR | Zbl
[23] A. Yu. Veretennikov, “On the rate of convergence for infinite server Erlang–Sevastyanov's problem”, Queueing Systems, 76:2 (2014), 181–203 | DOI | MR | Zbl
[24] A. Yu. Veretennikov, On convergence rate for Erlang–Sevastyanov type models with infinitely many servers, arXiv: abs/1412.3849
[25] A. Yu. Veretennikov, “On recurrence and availability factor for single–server system with general arrivals”, Reliability, Reliability: Theory Applications, 11:3(42) (2016), 49–58
[26] A. Yu. Veretennikov, G. A. Zverkina, “Simple Proof of Dynkin's Formula for Single–Server Systems and Polynomial Convergence Rates”, Markov Processes and Related Fields, 20:3 (2014), 479–504 | MR | Zbl