Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a6, author = {Andrey Pilipenko and Vladislav Khomenko}, title = {On a limit behavior of a random walk with modifications upon each visit to zero}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {71--80}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a6/} }
TY - JOUR AU - Andrey Pilipenko AU - Vladislav Khomenko TI - On a limit behavior of a random walk with modifications upon each visit to zero JO - Teoriâ slučajnyh processov PY - 2017 SP - 71 EP - 80 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a6/ LA - en ID - THSP_2017_22_1_a6 ER -
Andrey Pilipenko; Vladislav Khomenko. On a limit behavior of a random walk with modifications upon each visit to zero. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a6/
[1] A. N. Borodin, “An asymptotic behaviour of local times of a recurrent random walk with finite variance”, Theory Probab. Appl., 26:4 (1982), 758–772 | DOI | MR | Zbl
[2] D. Dolgopyat, “Central limit theorem for excited random walk in the recurrent regime”, ALEA Lat. Am. J. Probab. Math. Stat, 8 (2011), 259–268 | MR | Zbl
[3] W. Feller, An Introduction to Probability Theory and Its Applications, v. 1, J. Wiley $\$ sons, 1960 | MR
[4] I. I. Gikhman, A. V. Skorokhod, “On the densities of probability measures in function spaces”, Russian Mathematical Surveys, 21:6 (1966), 83–156 | DOI | MR
[5] J. M. Harrison, L. A. Shepp, “On skew Brownian motion”, Ann. Probab., 9 (1981), 309–313 | DOI | MR | Zbl
[6] A. M. Iksanov, A. Yu. Pilipenko, “A functional limit theorem for locally perturbed random walks”, Probab. Math. Statist., 36:2 (2016), 353-–368 | MR | Zbl
[7] E. Kosygina, M. P. Zerner, “Excited random walks: results, methods, open problems”, Bull. Inst. Math. Acad. Sin. (N.S.), 8:1, in a special issue in honor of S.R.S. Varadhan's 70th birthday (2013), 105–157 | MR | Zbl
[8] R. Liptser, A. N. Shiryaev, Statistics of random processes, Nauka, Moscow, 1974 (Russian) | MR
[9] R. A. Minlos, E. A. Zhizhina, “Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice”, Russ. Math. Surv., 52 (1997), 327–340 | DOI | MR | Zbl
[10] A. Pilipenko, Yu. Prykhodko, “On a limit behavior of a sequence of Markov processes perturbed in a neighborhood of a singular point”, Ukrainian Math. Journal, 67:4 (2015), 499–516 | DOI | MR | Zbl
[11] A. Yu. Pilipenko, Yu. E. Prykhodko, “Limit behavior of a simple random walk with non-integrable jump from a barrier”, Theor. Stoch. Proc., 19(35) (2014), 52–61 | MR | Zbl
[12] A. Pilipenko, L. Sakhanenko, “On a limit behavior of one-dimensional random walk with non-integrable impurity”, Theory of Stochastic Processes, 20(36):2 (2015), 97–104 | MR | Zbl
[13] O. Raimond, B. Schapira, “Excited Brownian motions as limits of excited random walks”, Probability Theory and Related Fields, 154:3-4 (2012), 875–909 | DOI | MR | Zbl
[14] A. N. Shiryaev, Probability, Graduate texts in mathematics, 95, 1996 | DOI | MR
[15] D. Szász, A. Telcs, “Random walk in an inhomogeneous medium with local impurities”, J. Stat. Physics, 26 (1981), 527–537 | DOI | MR | Zbl
[16] M. P. W. Zerner, “Recurrence and transience of excited random walks on $Z^d$ and strips”, Electron. Comm. Probab., 11:12 (2006), 118–128 | DOI | MR | Zbl