Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a4, author = {Madani Abdelatif Bench\'erif}, title = {A limit theorem for boundary local time of a symmetric reflected diffusion}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {41--61}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/} }
Madani Abdelatif Benchérif. A limit theorem for boundary local time of a symmetric reflected diffusion. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/
[1] R. Banuelos, R. F. Bass, K. Burdzy, “A representation of local time for Lipschitz surfaces”, Prob. Theor. Rel. Fields., 84 (1990), 521–547 | DOI | MR | Zbl
[2] R. G. Bartle, A modern theory of integration, Grad. Stud. Math., 32, Amer. Math. Soc., 2001 | DOI | MR
[3] A. Benchérif Madani, “Probabilistic approach to the Neumann problem for a symmetric operator”, Serdica Math. J., 35 (2009), 317–342 | MR | Zbl
[4] J. M. Bismut, “The calculus of boundary processes”, Ann. Sci. E.N.S. 4th Series,, 17:4 (1984), 507–622 | MR | Zbl
[5] K. Burdzy, E. H. Toby, R. J. Williams, “On Brownian excursions in Lipschitz domains II: Local asymptotic distributions”, Seminars on stoch. Proc. 1988, eds. Cinlar and al., Birkhäuser, Boston, 1989, 55–85 | DOI | MR
[6] P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, v. I, Acad. Press, New York and London, 1971 | MR
[7] K. L. Chung, J. L. Doob, “Fields, optionality and measurability”, Amer. J. Math., 87 (1965), 397–424 | DOI | MR | Zbl
[8] H. Cramer, The mathematical foundations of statistics, Seventh printing, Princeton Univ. Press, 1957
[9] C. Dellacherie, P. A. Meyer, Probabilités et potentiel, Chap. XII to XVI, Hermann, 1986 | MR
[10] W.-T. Fan, “Discrete approximations to local times for reflected diffusions”, Electron. Commun. Prob., 21:16 (2016), 1–12 | MR
[11] A. Friedman, Partial differential equations of parabolic type, R. E. Krieger Publ. Company, Malabar, Florida, 1983 | MR
[12] M. G. Garroni, J. L. Menaldi, Green functions for second order parabolic integro-differential problems, Longman Scien. Techn., 1992 | MR | Zbl
[13] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 2001 | MR | Zbl
[14] A. Grigor'yan, “Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold”, Proceedings of the ARW on potential theory, ed. K. GowriSankaran, Kluwer Acad. Publ., 1994, 237–252 | Zbl
[15] P. Hsu, “On excursions of reflecting Brownian motion”, Trans. Amer. Math. Soc, 296:1 (1986), 239–264 | DOI | MR | Zbl
[16] S. Itô, Diffusion equations, Translations of mathematical monographs, 114, Amer. Math. Soc., 1992 | MR | Zbl
[17] P. A. Jacobs, “Excursions of a Markov process induced by continuous additive functionals”, Prob. Theor. Rel. Fields., 44 (1978), 325–336 | MR | Zbl
[18] D. Laissaoui, A. Benchérif Madani, “A limit theorem for local time and application to random sets”, Stat. Prob. Letters, 88 (2014), 107–117 | DOI | MR | Zbl
[19] C. Mayer, “Processus de Markov non stationnaires et espace-temps”, Ann. IHP, Section B, 4:3 (1968), 165–177 | MR | Zbl
[20] P. W. Millar, “Path behavior of processes with sationary independent increments”, Prob. Theor. Rel. Fields, 17 (1971), 53–73 | MR
[21] S. C. Port, C. J. Stone, Brownian motion and classical potential theory, Acad. Press, 1978 | MR | Zbl
[22] J. M. Rolin, “The inverse of a continuous additive functional”, Pacific J. Math., 58:2 (1975), 585–604 | DOI | MR | Zbl
[23] K. I. Sato, T. Ueno, “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4:3 (1965), 529–605 | DOI | MR | Zbl
[24] A. V. Skorokhod, Random processes with independent increments, Kluwer Acad. Publ., 1991 | MR | Zbl
[25] D. W. Stroock, S. R. S. Varadhan, “Diffusions with boundary conditions”, Comm. Pure Appl. Math., 24 (1971), 147–225 | DOI | MR | Zbl
[26] Y. Zhou, W. Cai, E. P. Hsu, Computation of local time of reflected Brownian motion and probabilistic representation of the Neumann problem, 4 Feb 2015, arXiv: 1502.01319v1 [math.NA] | MR