A limit theorem for boundary local time of a symmetric reflected diffusion
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 41-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a symmetric diffusion reflecting in a $\mathcal{C}^{3}$-bounded domain $D\subset\mathbb{R}^{d}$, $d\geq 1$, with a $\mathcal{C}^{2}$-bounded and non-degenerate matrix $a$. For $t>0$ and $n,k\in \mathbb{N}$ let $N(n,t)$ be the number of dyadic intervals $I_{n,k}$ of length $2^{-n}$, $k\geq 0$, that contain a time $s\leq t$ s.t. $X(s)\in\partial D$. For a suitable normalizing factor $H(t)$ we prove, extending the one dimensional case, that a.s. for all $t>0$ the entropy functional $N(n,t)/H(2^{-n})$ converges to the boundary local time $L(t)$ as $n\rightarrow\infty$. Applications include boundary value problems in PDE theory, efficient Monte Carlo simulations and Finance.
Keywords: Reflecting symmetric diffusion, Boundary local time, limit theorem, random scenery.
Mots-clés : Monte Carlo
@article{THSP_2017_22_1_a4,
     author = {Madani Abdelatif Bench\'erif},
     title = {A limit theorem for boundary local time of a symmetric reflected diffusion},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {41--61},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/}
}
TY  - JOUR
AU  - Madani Abdelatif Benchérif
TI  - A limit theorem for boundary local time of a symmetric reflected diffusion
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 41
EP  - 61
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/
LA  - en
ID  - THSP_2017_22_1_a4
ER  - 
%0 Journal Article
%A Madani Abdelatif Benchérif
%T A limit theorem for boundary local time of a symmetric reflected diffusion
%J Teoriâ slučajnyh processov
%D 2017
%P 41-61
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/
%G en
%F THSP_2017_22_1_a4
Madani Abdelatif Benchérif. A limit theorem for boundary local time of a symmetric reflected diffusion. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/