A limit theorem for boundary local time of a symmetric reflected diffusion
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 41-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a symmetric diffusion reflecting in a $\mathcal{C}^{3}$-bounded domain $D\subset\mathbb{R}^{d}$, $d\geq 1$, with a $\mathcal{C}^{2}$-bounded and non-degenerate matrix $a$. For $t>0$ and $n,k\in \mathbb{N}$ let $N(n,t)$ be the number of dyadic intervals $I_{n,k}$ of length $2^{-n}$, $k\geq 0$, that contain a time $s\leq t$ s.t. $X(s)\in\partial D$. For a suitable normalizing factor $H(t)$ we prove, extending the one dimensional case, that a.s. for all $t>0$ the entropy functional $N(n,t)/H(2^{-n})$ converges to the boundary local time $L(t)$ as $n\rightarrow\infty$. Applications include boundary value problems in PDE theory, efficient Monte Carlo simulations and Finance.
Keywords: Reflecting symmetric diffusion, Boundary local time, limit theorem, random scenery.
Mots-clés : Monte Carlo
@article{THSP_2017_22_1_a4,
     author = {Madani Abdelatif Bench\'erif},
     title = {A limit theorem for boundary local time of a symmetric reflected diffusion},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {41--61},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/}
}
TY  - JOUR
AU  - Madani Abdelatif Benchérif
TI  - A limit theorem for boundary local time of a symmetric reflected diffusion
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 41
EP  - 61
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/
LA  - en
ID  - THSP_2017_22_1_a4
ER  - 
%0 Journal Article
%A Madani Abdelatif Benchérif
%T A limit theorem for boundary local time of a symmetric reflected diffusion
%J Teoriâ slučajnyh processov
%D 2017
%P 41-61
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/
%G en
%F THSP_2017_22_1_a4
Madani Abdelatif Benchérif. A limit theorem for boundary local time of a symmetric reflected diffusion. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a4/

[1] R. Banuelos, R. F. Bass, K. Burdzy, “A representation of local time for Lipschitz surfaces”, Prob. Theor. Rel. Fields., 84 (1990), 521–547 | DOI | MR | Zbl

[2] R. G. Bartle, A modern theory of integration, Grad. Stud. Math., 32, Amer. Math. Soc., 2001 | DOI | MR

[3] A. Benchérif Madani, “Probabilistic approach to the Neumann problem for a symmetric operator”, Serdica Math. J., 35 (2009), 317–342 | MR | Zbl

[4] J. M. Bismut, “The calculus of boundary processes”, Ann. Sci. E.N.S. 4th Series,, 17:4 (1984), 507–622 | MR | Zbl

[5] K. Burdzy, E. H. Toby, R. J. Williams, “On Brownian excursions in Lipschitz domains II: Local asymptotic distributions”, Seminars on stoch. Proc. 1988, eds. Cinlar and al., Birkhäuser, Boston, 1989, 55–85 | DOI | MR

[6] P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, v. I, Acad. Press, New York and London, 1971 | MR

[7] K. L. Chung, J. L. Doob, “Fields, optionality and measurability”, Amer. J. Math., 87 (1965), 397–424 | DOI | MR | Zbl

[8] H. Cramer, The mathematical foundations of statistics, Seventh printing, Princeton Univ. Press, 1957

[9] C. Dellacherie, P. A. Meyer, Probabilités et potentiel, Chap. XII to XVI, Hermann, 1986 | MR

[10] W.-T. Fan, “Discrete approximations to local times for reflected diffusions”, Electron. Commun. Prob., 21:16 (2016), 1–12 | MR

[11] A. Friedman, Partial differential equations of parabolic type, R. E. Krieger Publ. Company, Malabar, Florida, 1983 | MR

[12] M. G. Garroni, J. L. Menaldi, Green functions for second order parabolic integro-differential problems, Longman Scien. Techn., 1992 | MR | Zbl

[13] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 2001 | MR | Zbl

[14] A. Grigor'yan, “Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold”, Proceedings of the ARW on potential theory, ed. K. GowriSankaran, Kluwer Acad. Publ., 1994, 237–252 | Zbl

[15] P. Hsu, “On excursions of reflecting Brownian motion”, Trans. Amer. Math. Soc, 296:1 (1986), 239–264 | DOI | MR | Zbl

[16] S. Itô, Diffusion equations, Translations of mathematical monographs, 114, Amer. Math. Soc., 1992 | MR | Zbl

[17] P. A. Jacobs, “Excursions of a Markov process induced by continuous additive functionals”, Prob. Theor. Rel. Fields., 44 (1978), 325–336 | MR | Zbl

[18] D. Laissaoui, A. Benchérif Madani, “A limit theorem for local time and application to random sets”, Stat. Prob. Letters, 88 (2014), 107–117 | DOI | MR | Zbl

[19] C. Mayer, “Processus de Markov non stationnaires et espace-temps”, Ann. IHP, Section B, 4:3 (1968), 165–177 | MR | Zbl

[20] P. W. Millar, “Path behavior of processes with sationary independent increments”, Prob. Theor. Rel. Fields, 17 (1971), 53–73 | MR

[21] S. C. Port, C. J. Stone, Brownian motion and classical potential theory, Acad. Press, 1978 | MR | Zbl

[22] J. M. Rolin, “The inverse of a continuous additive functional”, Pacific J. Math., 58:2 (1975), 585–604 | DOI | MR | Zbl

[23] K. I. Sato, T. Ueno, “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4:3 (1965), 529–605 | DOI | MR | Zbl

[24] A. V. Skorokhod, Random processes with independent increments, Kluwer Acad. Publ., 1991 | MR | Zbl

[25] D. W. Stroock, S. R. S. Varadhan, “Diffusions with boundary conditions”, Comm. Pure Appl. Math., 24 (1971), 147–225 | DOI | MR | Zbl

[26] Y. Zhou, W. Cai, E. P. Hsu, Computation of local time of reflected Brownian motion and probabilistic representation of the Neumann problem, 4 Feb 2015, arXiv: 1502.01319v1 [math.NA] | MR