Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the Azéma-Yor solution to the Skorokhod embedding problem maximizes the law of the running maximum of a uniformly integrable martingale with a given terminal value distribution. Recently this optimality property has been generalized to expectations of certain bivariate cost functions depending on the terminal value and the running maximum. In this paper we give an extension of this result to another class of functions. In particular, we study a class of cost functions for which the corresponding optimal embeddings are not Azéma-Yor. The suggested approach is quite straightforward modulo basic facts of the Monge-Kantorovich mass transportation theory. Loosely speaking, the joint distribution of the running maximum and the terminal value in the Azéma-Yor embedding is concentrated on the graph of a monotone function, and we show that this fact follows from the cyclical monotonicity criterion for solutions to the Monge-Kantorovich problem.
Keywords: Skorokhod problem, Azéma-Yor embedding, Monge-Kantorovich problem, supermodular functions, running maximum and the terminal value of a martingale.
Mots-clés : optimal transport
@article{THSP_2017_22_1_a3,
     author = {Nikolay Lysenko},
     title = {Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a3/}
}
TY  - JOUR
AU  - Nikolay Lysenko
TI  - Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 30
EP  - 40
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a3/
LA  - en
ID  - THSP_2017_22_1_a3
ER  - 
%0 Journal Article
%A Nikolay Lysenko
%T Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach
%J Teoriâ slučajnyh processov
%D 2017
%P 30-40
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a3/
%G en
%F THSP_2017_22_1_a3
Nikolay Lysenko. Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a3/

[1] J. Azéma, M. Yor, Le probléme de Skorokhod: Compléments á “Une solution simple au probléme de Skorokhod”, Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1979 | MR

[2] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Uspekhi Mat. Nauk, 67:5(407) (2012), 3–110 | DOI | MR | Zbl

[3] D. T. Breeden, R. H. Litzenberger, “Prices of state-contingent claims implicit in options prices”, J. Business, 51 (1978), 621–651 | DOI

[4] D. G. Hobson, “The Skorokhod embedding problem and model-independent bounds for option prices”, 2011, Lecture Notes in Math., 2003, Springer, Berlin, 267–318 | MR | Zbl

[5] D. G. Hobson, M. Klimmek, “Maximizing functionals of the maximum in the Skorokhod embedding problem and an application to variance swaps”, The Annals of Applied Probability, 23:5 (2013), 2020–2052 | DOI | MR | Zbl

[6] J. Obłój,, “The Skorokhod embedding problem and its offspring”, electronic, Probab. Surv., 1 (2004), 321–390 | DOI | MR

[7] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95 (1993), 451–466 | DOI | MR | Zbl

[8] A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wesley, Reading, MA, 1965 | MR | Zbl

[9] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi + 370 pp. | DOI | MR | Zbl

[10] D. A. Zaev, “On the Monge-Kantorovich problem with additional linear constraints”, Mat. Zametki, 98(5) (2015), 664–683 | DOI | MR | Zbl